
8.1 INTRODUCTION

The circuits described in the previous chapters had only one source or
two or more sources in series or parallel present. The step-by-step pro-
cedure outlined in those chapters cannot be applied if the sources are
not in series or parallel. There will be an interaction of sources that will
not permit the reduction technique used in Chapter 7 to find quantities
such as the total resistance and source current.

Methods of analysis have been developed that allow us to approach,
in a systematic manner, a network with any number of sources in any
arrangement. Fortunately, these methods can also be applied to networks
with only one source. The methods to be discussed in detail in this chap-
ter include branch-current analysis, mesh analysis, and nodal analy-
sis. Each can be applied to the same network. The “best” method cannot
be defined by a set of rules but can be determined only by acquiring a
firm understanding of the relative advantages of each. All the methods
can be applied to linear bilateral networks. The term linear indicates that
the characteristics of the network elements (such as the resistors) are
independent of the voltage across or current through them. The second
term, bilateral, refers to the fact that there is no change in the behavior or
characteristics of an element if the current through or voltage across the
element is reversed. Of the three methods listed above, the branch-
current method is the only one not restricted to bilateral devices. Before
discussing the methods in detail, we shall consider the current source
and conversions between voltage and current sources. At the end of the
chapter we shall consider bridge networks and D-Y andY-D conversions.
Chapter 9 will present the important theorems of network analysis that
can also be employed to solve networks with more than one source.

8.2 CURRENT SOURCES

The concept of the current source was introduced in Section 2.4 with
the photograph of a commercially available unit. We must now investi-
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gate its characteristics in greater detail so that we can properly deter-
mine its effect on the networks to be examined in this chapter.

The current source is often referred to as the dual of the voltage
source. A battery supplies a fixed voltage, and the source current can
vary; but the current source supplies a fixed current to the branch in
which it is located, while its terminal voltage may vary as determined
by the network to which it is applied. Note from the above that duality
simply implies an interchange of current and voltage to distinguish the
characteristics of one source from the other.

The interest in the current source is due primarily to semiconductor
devices such as the transistor. In the basic electronics courses, you will
find that the transistor is a current-controlled device. In the physical
model (equivalent circuit) of a transistor used in the analysis of transistor
networks, there appears a current source as indicated in Fig. 8.1. The sym-
bol for a current source appears in Fig. 8.1(a). The direction of the arrow
within the circle indicates the direction in which current is being supplied.

NA

For further comparison, the terminal characteristics of an ideal dc
voltage and current source are presented in Fig. 8.2, ideal implying per-
fect sources, or no internal losses sensitive to the demand from the
applied load. Note that for the voltage source, the terminal voltage is
fixed at E volts independent of the direction of the current I. The direc-
tion and magnitude of I will be determined by the network to which the
supply is connected.

FIG. 8.1

Current source within the transistor equivalent circuit.

(a) Transistor symbol (b) Transistor equivalent circuit
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FIG. 8.2

Comparing the characteristics of an ideal voltage and current source.

Voltage

E
I

E

0 I

(a)

Current

Vs

I

I

0

(b)

Vs

(+) –

(–) +

I

The characteristics of the ideal current source, shown in Fig. 8.2(b),
reveal that the magnitude of the supply current is independent of the
polarity of the voltage across the source. The polarity and magnitude of
the source voltage Vs will be determined by the network to which the
source is connected.

For all one-voltage-source networks the current will have the direc-
tion indicated to the right of the battery in Fig. 8.2(a). For all single-
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current-source networks, it will have the polarity indicated to the right
of the current source in Fig. 8.2(b).

In review:

A current source determines the current in the branch in which it is
located

and

the magnitude and polarity of the voltage across a current source are
a function of the network to which it is applied.

EXAMPLE 8.1 Find the source voltage Vs and the current I1 for the
circuit of Fig. 8.3.

Solution:

I1 � I � 10 mA

Vs � V1 � I1R1 � (10 mA)(20 k�) � 200 V

EXAMPLE 8.2 Find the voltage Vs and the currents I1 and I2 for the
network of Fig. 8.4.

Solution:

Vs � E � 12 V

I2 � �
V
R

R� � �
E
R

� � � 3 A

Applying Kirchhoff’s current law:

I � I1 � I2

and I1 � I � I2 � 7 A � 3 A � 4 A

EXAMPLE 8.3 Determine the current I1 and the voltage Vs for the net-
work of Fig. 8.5.

Solution: Using the current divider rule:

I1 � � � 2 A

The voltage V1 is

V1 � I1R1 � (2 A)(2 �) � 4 V

and, applying Kirchhoff’s voltage law,

�Vs � V1 � 20 V � 0

and Vs � V1 � 20 V � 4 V � 20 V
� 24 V

Note the polarity of Vs as determined by the multisource network.

8.3 SOURCE CONVERSIONS

The current source described in the previous section is called an ideal
source due to the absence of any internal resistance. In reality, all

(1 �)(6 A)
��
1 � � 2 �

R2I
�
R2 � R1

12 V
�
4 �

NA

–
I  =  10 mA

+
R1 20 k�

I1

Vs

–

+
V1

FIG. 8.3

Example 8.1.
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FIG. 8.5

Example 8.3.
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sources—whether they are voltage or current—have some internal resis-
tance in the relative positions shown in Figs. 8.6 and 8.7. For the voltage
source, if Rs � 0 � or is so small compared to any series resistor that it
can be ignored, then we have an “ideal” voltage source. For the current
source, if Rs � ∞ � or is large enough compared to other parallel ele-
ments that it can be ignored, then we have an “ideal” current source.

If the internal resistance is included with either source, then that
source can be converted to the other type using the procedure to be
described in this section. Since it is often advantageous to make such a
maneuver, this entire section is devoted to being sure that the steps are
understood. It is important to realize, however, as we proceed through
this section, that

source conversions are equivalent only at their external terminals.

The internal characteristics of each are quite different.
We want the equivalence to ensure that the applied load of Figs. 8.6

and 8.7 will receive the same current, voltage, and power from each
source and in effect not know, or care, which source is present.

In Fig. 8.6 if we solve for the load current IL, we obtain

IL � �
Rs �

E
RL

� (8.1)

If we multiply this by a factor of 1, which we can choose to be Rs /Rs,
we obtain

IL � �
Rs

(1
�

)E
RL

� � �
(
R
R

s

s

�

/Rs

R
)E

L
� � �

R
R

s

s

(
�

E/R
R

s

L

)
� � �

Rs

R
�

s I
RL

� (8.2)

If we define I � E/Rs, Equation (8.2) is the same as that obtained by
applying the current divider rule to the network of Fig. 8.7. The result
is an equivalence between the networks of Figs. 8.6 and 8.7 that simply
requires that I � E/Rs and the series resistor Rs of Fig. 8.6 be placed in
parallel, as in Fig. 8.7. The validity of this is demonstrated in Example
8.4 of this section.

For clarity, the equivalent sources, as far as terminals a and b are con-
cerned, are repeated in Fig. 8.8 with the equations for converting in
either direction. Note, as just indicated, that the resistor Rs is the same in
each source; only its position changes. The current of the current source
or the voltage of the voltage source is determined using Ohm’s law and
the parameters of the other configuration. It was pointed out in some
detail in Chapter 6 that every source of voltage has some internal series
resistance. For the current source, some internal parallel resistance will
always exist in the practical world. However, in many cases, it is an

NA
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RL

IL

E

Rs
RL

IL

E RsI =

FIG. 8.6

Practical voltage source.

FIG. 8.7

Practical current source.
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E  =  IRs
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Rs

I = E
Rs

FIG. 8.8

Source conversion.
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excellent approximation to drop the internal resistance of a source due to
the magnitude of the elements of the network to which it is applied. For
this reason, in the analyses to follow, voltage sources may appear with-
out a series resistor, and current sources may appear without a parallel
resistance. Realize, however, that for us to perform a conversion from
one type of source to another, a voltage source must have a resistor in
series with it, and a current source must have a resistor in parallel.

EXAMPLE 8.4

a. Convert the voltage source of Fig. 8.9(a) to a current source, and cal-
culate the current through the 4-� load for each source.

b. Replace the 4-� load with a 1-k� load, and calculate the current IL

for the voltage source.
c. Repeat the calculation of part (b) assuming that the voltage source is

ideal (Rs � 0 �) because RL is so much larger than Rs. Is this one of
those situations where assuming that the source is ideal is an appro-
priate approximation?

Solutions:

a. See Fig. 8.9.

Fig. 8.9(a): IL � �
Rs �

E
RL

� � �
2 �

6
�

V
4 �

� � 1 A

Fig. 8.9(b): IL � �
Rs

R
�

s I
RL

� � �
2
(2

�

�

�

)(3
4
A
�

)
� � 1 A

b. IL � �
Rs �

E
RL

� � � 5.99 mA

c. IL � �
R
E

L
� � � 6 mA � 5.99 mA

Yes, RL k Rs (voltage source).

EXAMPLE 8.5

a. Convert the current source of Fig. 8.10(a) to a voltage source, and
find the load current for each source.

b. Replace the 6-k� load with a 10-� load, and calculate the current IL

for the current source.
c. Repeat the calculation of part (b) assuming that the current source is

ideal (Rs � ∞ �) because RL is so much smaller than Rs. Is this one
of those situations where assuming that the source is ideal is an
appropriate approximation?

6 V
�
1 k�

6 V
��
2 � � 1 k�

NA

(a)

Rs

RL

2 �

–

+
6 V

4 �

IL

E

a

b

(b)

Rs RL2 � 4 �

IL

a

b

I = =  3 AE
Rs

3 A

FIG. 8.9

Example 8.4.

FIG. 8.10

Example 8.5.
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Solutions:

a. See Fig. 8.10.

Fig. 8.10(a): IL � �
Rs

R
�

s I
RL

� � � 3 mA

Fig. 8.10(b): IL � �
Rs �

E
RL

� � � � 3 mA

b. IL � �
Rs

R
�

s I
RL

� � � 8.97 mA

c. IL � I � 9 mA � 8.97 mA

Yes, Rs k RL (current source).

8.4 CURRENT SOURCES IN PARALLEL

If two or more current sources are in parallel, they may all be replaced
by one current source having the magnitude and direction of the resul-
tant, which can be found by summing the currents in one direction and
subtracting the sum of the currents in the opposite direction. The new
parallel resistance is determined by methods described in the discussion
of parallel resistors in Chapter 5. Consider the following examples. 

EXAMPLE 8.6 Reduce the parallel current sources of Figs. 8.11 and
8.12 to a single current source.

(3 k�)(9 mA)
��
3 k� � 10 �

27 V
�
9 k�

27 V
��
3 k� � 6 k�

(3 k�)(9 mA)
��
3 k� � 6 k�

NA

FIG. 8.11

Example 8.6.

FIG. 8.12

Example 8.6.

Is  =  10 A  –  6 A  =  4 A
Rs  =  3 � �  6 �  = 2 �

6 A
R1 3 �

10 A
R2 6 �

4 A
R3 2 �Is

3 A R1 4 � Rs 4 �Is7 A 4 A 8 A

Is =  7 A  +  4 A  –  3 A  =  8 A
Rs =  R1 = 4 �

Solution: Note the solution in each figure.
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EXAMPLE 8.7 Reduce the network of Fig. 8.13 to a single current
source, and calculate the current through RL.

Solution: In this example, the voltage source will first be converted
to a current source as shown in Fig. 8.14. Combining current sources,

NA

I2 6 A 24 �R2 RL 14 �

IL

R1 8 �

E1 32 V

FIG. 8.13

Example 8.7.I1 4 A 8 �R1 24 �R2I2 6 A RL 14 �

IL

I1 =
E1
R1

=
32 V
8 �

= 4 A

Is � I1 � I2 � 4 A � 6 A � 10 A

and Rs � R1 � R2 � 8 � � 24 � � 6 �

Applying the current divider rule to the resulting network of Fig. 8.15,

IL � �
Rs

R
�
s Is

RL
� � � � 3 A

EXAMPLE 8.8 Determine the current I2 in the network of Fig. 8.16.

Solution: Although it might appear that the network cannot be
solved using methods introduced thus far, one source conversion as
shown in Fig. 8.17 will result in a simple series circuit:

Es � I1R1 � (4 A)(3 �) � 12 V

and Rs � R1 � 3 �

and I2 � � � � 3.4 A

8.5 CURRENT SOURCES IN SERIES

The current through any branch of a network can be only single-valued.
For the situation indicated at point a in Fig. 8.18, we find by application
of Kirchhoff’s current law that the current leaving that point is greater
than that entering—an impossible situation. Therefore,

current sources of different current ratings are not connected in
series,

just as voltage sources of different voltage ratings are not connected in
parallel.

8.6 BRANCH-CURRENT ANALYSIS

We will now consider the first in a series of methods for solving net-
works with two or more sources. Once the branch-current method is

17 V
�
5 �

12 V � 5 V
��
3 � � 2 �

Es � E2
�
Rs � R2

60 A
�

20

(6 �)(10 A)
��
6 � � 14 �

FIG. 8.14

Network of Fig. 8.13 following the conversion of the voltage source to a current
source.

Is 10 A 6 �Rs RL 14 �

IL

Is

FIG. 8.15

Network of Fig. 8.14 reduced to its simplest 
form.

I1 4 A 3 �R1 R2 2 �

I2

5 V
a

b

E2

–+

FIG. 8.16

Example 8.8.

E23 �

–+
Rs

Es 12 V

2 �R2

5 V

I2+

–

a

b

FIG. 8.17

Network of Fig. 8.16 following the conversion 
of the current source to a voltage source.

a6 A 7 A

No!

FIG. 8.18

Invalid situation.
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mastered, there is no linear dc network for which a solution cannot be
found. Keep in mind that networks with two isolated voltage sources
cannot be solved using the approach of Chapter 7. For additional evi-
dence of this fact, try solving for the unknown elements of Example 8.9
using the methods introduced in Chapter 7. The network of Fig. 8.21
can be solved using the source conversions described in the last section,
but the method to be described in this section has applications far
beyond the configuration of this network. The most direct introduction
to a method of this type is to list the series of steps required for its
application. There are four steps, as indicated below. Before continuing,
understand that this method will produce the current through each
branch of the network, the branch current. Once this is known, all other
quantities, such as voltage or power, can be determined.

1. Assign a distinct current of arbitrary direction to each branch of
the network.

2. Indicate the polarities for each resistor as determined by the
assumed current direction.

3. Apply Kirchhoff’s voltage law around each closed, independent
loop of the network.

The best way to determine how many times Kirchhoff’s voltage law
will have to be applied is to determine the number of “windows” in the
network. The network of Example 8.9 has a definite similarity to the
two-window configuration of Fig. 8.19(a). The result is a need to apply
Kirchhoff’s voltage law twice. For networks with three windows, as
shown in Fig. 8.19(b), three applications of Kirchhoff’s voltage law are
required, and so on.

NA

4. Apply Kirchhoff’s current law at the minimum number of nodes
that will include all the branch currents of the network.

The minimum number is one less than the number of independent
nodes of the network. For the purposes of this analysis, a node is a
junction of two or more branches, where a branch is any combination

FIG. 8.19

Determining the number of independent closed loops.

(4 nodes)

2

3

4

1
4 – 1  =  3 eq.

(4 nodes)

2 3 4

1
4 – 1  =  3 eq.

(2 nodes)
2

1
2 – 1  =  1 eq.

(2 nodes)
2

1
2 – 1  =  1 eq.

FIG. 8.20

Determining the number of applications of Kirchhoff’s current law required.
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4 �

6 V
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E2

–

+

1 �

2 VE1

–

+

2 �R1

I2

I3

bd

a

c

R2
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FIG. 8.21

Example 8.9.Defined
by I1 I2

4 �

6 V

–

a

+

21

I1

E2

–

+

–

+1 �

2 VE1

–

+

–

+2 �

I3

Defined
by I2

Fixed
polarity

Fixed
polarity

Defined by I3

FIG. 8.22

Inserting the polarities across the resistive elements as defined by the chosen
branch currents.

Step 3: Kirchhoff’s voltage law is applied around each closed loop (1
and 2) in the clockwise direction:

and

of series elements. Figure 8.20 defines the number of applications of
Kirchhoff’s current law for each configuration of Fig. 8.19.

5. Solve the resulting simultaneous linear equations for assumed
branch currents.

It is assumed that the use of the determinants method to solve for the
currents I1, I2, and I3 is understood and is a part of the student’s mathe-
matical background. If not, a detailed explanation of the procedure is
provided in Appendix C. Calculators and computer software packages
such as Mathcad can find the solutions quickly and accurately.

EXAMPLE 8.9 Apply the branch-current method to the network of
Fig. 8.21.

Solution 1:

Step 1: Since there are three distinct branches (cda, cba, ca), three cur-
rents of arbitrary directions (I1, I2, I3) are chosen, as indicated in Fig.
8.21. The current directions for I1 and I2 were chosen to match the
“pressure” applied by sources E1 and E2, respectively. Since both I1 and
I2 enter node a, I3 is leaving.

Step 2: Polarities for each resistor are drawn to agree with assumed
current directions, as indicated in Fig. 8.22.

loop 1: V � �E1 � VR1
� VR3

� 0

Rise in potential

Drop in potential

loop 2: V � �VR3
� VR2

� E2 � 0

Rise in potential

Drop in potential

loop 1: V � �2 V �  2 � I1 �  4 � I3 � 0

loop 2: V �  4 � I3 �  1 � I2 � 6 V � 0

Battery
potential

Voltage drop
across 2-�

resistor

Voltage drop
across 4-�

resistor

�

�

�

�
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Step 4: Applying Kirchhoff’s current law at node a (in a two-node net-
work, the law is applied at only one node),

I1 � I2 � I3

Step 5: There are three equations and three unknowns (units removed
for clarity):

2 � 2 I1 � 4I3 � 0 Rewritten: 2 I1 � 0 � 4 I3 � 2
4I3 � 1 I2 � 6 � 0 0 � I2 � 4 I3 � 6

I1 � I2 � I3 I1 � I2 � I3 � 0

Using third-order determinants (Appendix C), we have

Mathcad Solution: Once you understand the procedure for enter-
ing the parameters, you can use Mathcad to solve determinants such as

2        0        4
6        1        4

2        0        4
0        1        4

0        1 �1

1        1 �1

2        2 4
0        6 4

2        0 2
0        1 6
1        1 0

1        0 �1

I1 �

I2 �

I3 �

D �

� �1 A

� 2 A

� 1 A

D

D

A negative sign in front of a
branch current indicates only
that the actual current is
in the direction opposite to
that assumed.

NA

FIG. 8.23

Using Mathcad to verify the numerical calculations of Example 8.9.
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appearing in Solution 1 in a very short time frame. The numerator is
defined by n in the same manner described for earlier exercises. Then
the sequence View-Toolbars-Matrix is applied to obtain the Matrix
toolbar appearing in Fig. 8.23. Selecting the top left option called
Matrix will result in the Insert Matrix dialog box in which 3 � 3 is
selected. The 3 � 3 matrix will appear with a bracket to signal which
parameter should be entered. Enter that parameter, and then use the left
click of the mouse to select the next parameter you want to enter. When
you have finished, move on to define the denominator d in the same
manner. Then define the current of interest, select Determinant from
the Matrix toolbar, and insert the numerator variable n. Follow with a
division sign, and enter the Determinant of the denominator as shown
in Fig. 8.23. Retype I1 and select the equal sign; the correct result of
�1 will appear.

Once you have mastered the rather simple and direct process just
described, the availability of Mathcad as a checking tool or solving
mechanism will be deeply appreciated.

Solution 2: Instead of using third-order determinants as in Solution
1, we could reduce the three equations to two by substituting the third
equation in the first and second equations:

or �6 I1 � 4 I2 � �2
�4 I1 � 5 I2 � �6

Multiplying through by �1 in the top equation yields

6 I1 � 4 I2 � �2
4 I1 � 5 I2 � �6

and using determinants,

�2 4�
�6 5� 10 � 24 �14

I1 � ––––––– � –––––––– � –––– � �1A
�6 4� 30 � 16 14
�4 5�

Using the TI-86 calculator:

CALC. 8.1

Note the det (determinant) obtained from a Math listing under a
MATRX menu and the fact that each determinant must be determined
individually. The first set of brackets within the overall determinant
brackets of the first determinant defines the first row of the determinant,
while the second set of brackets within the same determinant defines
the second row. A comma separates the entries for each row. Obviously,
the time to learn how to enter the parameters is minimal when you con-
sider the savings in time and the accuracy obtained.

2 � 2I1 � 4 I1 � I2 � 0 2 � 2I1 � 4I1 � 4I2 � 0

4 I1 � I2 � I2 � 6 � 0 4I1 � 4I2 � I2 � 6 � 0

I3

I3

NA

det[[2,4][6,5]]/det[[6,4][4,5]] ENTER �1
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�6 2 �
�4 6 � 36 � 8 28

I2 � ––––––– � ––––––– � –– � 2 A
14 14 14

I3 � I1 � I2 � �1 � 2 � 1 A

It is now important that the impact of the results obtained be under-
stood. The currents I1, I2, and I3 are the actual currents in the branches
in which they were defined. A negative sign in the solution simply
reveals that the actual current has the opposite direction than initially
defined—the magnitude is correct. Once the actual current directions
and their magnitudes are inserted in the original network, the various
voltages and power levels can be determined. For this example, the
actual current directions and their magnitudes have been entered on the
original network in Fig. 8.24. Note that the current through the series
elements R1 and E1 is 1 A; the current through R3, 1 A; and the current
through the series elements R2 and E2, 2 A. Due to the minus sign in the
solution, the direction of I1 is opposite to that shown in Fig. 8.21. The
voltage across any resistor can now be found using Ohm’s law, and the
power delivered by either source or to any one of the three resistors can
be found using the appropriate power equation.

NA

Applying Kirchhoff’s voltage law around the loop indicated in Fig.
8.24,

V � �(4 �)I3 � (1 �)I2 � 6 V � 0

or (4 �)I3 � (1 �)I2 � 6 V

and (4 �)(1 A) � (1 �)(2 A) � 6 V
4 V � 2 V � 6 V

6 V � 6 V (checks)

EXAMPLE 8.10 Apply branch-current analysis to the network of Fig.
8.25.

Solution: Again, the current directions were chosen to match the
“pressure” of each battery. The polarities are then added and Kirch-
hoff’s voltage law is applied around each closed loop in the clockwise
direction. The result is as follows:

loop 1: �15 V � (4 �)I1 � (10 �)I3 � 20 V � 0

loop 2: �20 V � (10 �)I3 � (5 �)I2 � 40 V � 0

�

4 �

6 V

–

+

I1  =  1 A

E2

–

+
–

+1 �

2 VE1

–

+

–

+

2 �

R3

R1 R2

I2  =  2 A

I3  =  1 A

FIG. 8.24

Reviewing the results of the analysis of the network of Fig. 8.21.
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Applying Kirchhoff’s current law at node a,

I1 � I3 � I2

Substituting the third equation into the other two yields (with units
removed for clarity)

15 � 4 I1 � 10 I3 � 20 � 0 � Substituting for I2 (since it occurs

20 � 10 I3 � 5(I1 � I3) � 40 � 0 only once in the two equations)

or �4 I1 � 10 I3 � 5
�5 I1 � 15 I3 � �60

Multiplying the lower equation by �1, we have

�4 I1 � 10 I3 � 5
5 I1 � 15 I3 � 60

� 5 10�
� 60 15� 75 � 600 �525

I1 � –––––––– � ––––––––– � ––––– � 4.773 A
��4 10� �60 � 50 �110
� 5 15�

��4 5�
� 5 60� �240 � 25 �265

I3 � –––––––– � –––––––—–– � ––—– � 2.409 A
�110 �110 �110

I2 � I1 � I3 � 4.773 � 2.409 � 7.182 A

revealing that the assumed directions were the actual directions, with I2

equal to the sum of I1 and I3.

8.7 MESH ANALYSIS (GENERAL APPROACH)

The second method of analysis to be described is called mesh analysis.
The term mesh is derived from the similarities in appearance between the
closed loops of a network and a wire mesh fence. Although this
approach is on a more sophisticated plane than the branch-current
method, it incorporates many of the ideas just developed. Of the two
methods, mesh analysis is the one more frequently applied today.
Branch-current analysis is introduced as a stepping stone to mesh
analysis because branch currents are initially more “real” to the student
than the mesh (loop) currents employed in mesh analysis. Essentially,

NA

I1

5 �R1

I2

I3

a

R2R3 10 �

+

–+

–
4 �

40 VE2
+

–
15 VE1 –

+
20 VE3 –

+

21

–

+

FIG. 8.25

Example 8.10.
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the mesh-analysis approach simply eliminates the need to substitute the
results of Kirchhoff’s current law into the equations derived from
Kirchhoff’s voltage law. It is now accomplished in the initial writing of
the equations. The systematic approach outlined below should be fol-
lowed when applying this method.

1. Assign a distinct current in the clockwise direction to each
independent, closed loop of the network. It is not absolutely
necessary to choose the clockwise direction for each loop current.
In fact, any direction can be chosen for each loop current with no
loss in accuracy, as long as the remaining steps are followed
properly. However, by choosing the clockwise direction as a
standard, we can develop a shorthand method (Section 8.8) for
writing the required equations that will save time and possibly
prevent some common errors.

This first step is accomplished most effectively by placing a loop
current within each “window” of the network, as demonstrated in the
previous section, to ensure that they are all independent. A variety of
other loop currents can be assigned. In each case, however, be sure that
the information carried by any one loop equation is not included in a
combination of the other network equations. This is the crux of the ter-
minology: independent. No matter how you choose your loop currents,
the number of loop currents required is always equal to the number of
windows of a planar (no-crossovers) network. On occasion a network
may appear to be nonplanar. However, a redrawing of the network may
reveal that it is, in fact, planar. Such may be the case in one or two
problems at the end of the chapter.

Before continuing to the next step, let us ensure that the concept of
a loop current is clear. For the network of Fig. 8.26, the loop current I1

is the branch current of the branch containing the 2-� resistor and 2-V
battery. The current through the 4-� resistor is not I1, however, since
there is also a loop current I2 through it. Since they have opposite direc-
tions, I4� equals the difference between the two, I1 � I2 or I2 � I1,
depending on which you choose to be the defining direction. In other
words, a loop current is a branch current only when it is the only loop
current assigned to that branch.

2. Indicate the polarities within each loop for each resistor as
determined by the assumed direction of loop current for that loop.
Note the requirement that the polarities be placed within each
loop. This requires, as shown in Fig. 8.26, that the 4-� resistor
have two sets of polarities across it.

3. Apply Kirchhoff’s voltage law around each closed loop in the
clockwise direction. Again, the clockwise direction was chosen to
establish uniformity and prepare us for the method to be
introduced in the next section.
a. If a resistor has two or more assumed currents through it,

the total current through the resistor is the assumed current
of the loop in which Kirchhoff’s voltage law is being applied,
plus the assumed currents of the other loops passing through
in the same direction, minus the assumed currents through in
the opposite direction.

b. The polarity of a voltage source is unaffected by the direction of
the assigned loop currents.

4. Solve the resulting simultaneous linear equations for the assumed
loop currents.

NA

FIG. 8.26

Defining the mesh currents for a “two-
window” network.

I1

1 �R1

I2

R2

+

–+

–
2 �

6 V E2

+

–2 VE1 –

+

21 R3 4 �

+

–

–

+

I3
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EXAMPLE 8.11 Consider the same basic network as in Example 8.9
of the preceding section, now appearing in Fig. 8.26.

Solution:

Step 1: Two loop currents (I1 and I2) are assigned in the clockwise
direction in the windows of the network. A third loop (I3) could have
been included around the entire network, but the information carried by
this loop is already included in the other two.

Step 2: Polarities are drawn within each window to agree with assumed
current directions. Note that for this case, the polarities across the 4-�
resistor are the opposite for each loop current.

Step 3: Kirchhoff’s voltage law is applied around each loop in the
clockwise direction. Keep in mind as this step is performed that the law
is concerned only with the magnitude and polarity of the voltages
around the closed loop and not with whether a voltage rise or drop is
due to a battery or a resistive element. The voltage across each resistor
is determined by V � IR, and for a resistor with more than one current
through it, the current is the loop current of the loop being examined
plus or minus the other loop currents as determined by their directions.
If clockwise applications of Kirchhoff’s voltage law are always chosen,
the other loop currents will always be subtracted from the loop current
of the loop being analyzed.

loop 1: �E1 � V1 � V3 � 0 (clockwise starting at point a)

loop 2: �V3 � V2 � E2 � 0 (clockwise starting at point b)

�(4 �)(I2 � I1) � (1 �)I2 � 6 V � 0

Step 4: The equations are then rewritten as follows (without units for
clarity):

loop 1: �2 � 2I1 � 4I1 � 4I2 � 0
loop 2: �4I2 � 4I1 � 1I2 � 6 � 0

and loop 1: �2 � 6I1 � 4I2 � 0
loop 2: �5I2 � 4I1 � 6 � 0

or loop 1: �6I1 � 4I2 � �2
loop 2: �4I1 � 5I2 � �6

Applying determinants will result in

I1 � �1 A and I2 � �2 A

The minus signs indicate that the currents have a direction opposite to
that indicated by the assumed loop current.

The actual current through the 2-V source and 2-� resistor is there-
fore 1 A in the other direction, and the current through the 6-V source
and 1-� resistor is 2 A in the opposite direction indicated on the circuit.
The current through the 4-� resistor is determined by the following
equation from the original network:

�2 V �  2 �  I1 �  4 �   I1 � I2 � 0

Total current
through

4-� resistor

Voltage drop across
4-� resistor

Subtracted since I
2
 is

opposite in direction to I
1
.

NA
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loop 1: I4� � I1 � I2 � �1 A � (�2 A) � �1 A � 2 A
� 1 A (in the direction of I1)

The outer loop (I3) and one inner loop (either I1 or I2) would also
have produced the correct results. This approach, however, will often
lead to errors since the loop equations may be more difficult to write.
The best method of picking these loop currents is to use the window
approach.

EXAMPLE 8.12 Find the current through each branch of the network
of Fig. 8.27.

Solution:

Steps 1 and 2 are as indicated in the circuit. Note that the polarities of
the 6-� resistor are different for each loop current.

Step 3: Kirchhoff’s voltage law is applied around each closed loop in
the clockwise direction:

loop 1: �E1 � V1 � V2 � E2 � 0 (clockwise starting at point a)

�5 V � (1 �)I1 � (6 �)(I1 � I2) � 10 V � 0

I2 flows through the 6-Q resistor
in the direction opposite to I1.

loop 2: E2 � V2 � V3 � 0 (clockwise starting at point b)

�10 V � (6 �)(I2 � I1) � (2 �)I2 � 0

The equations are rewritten as

5 � I1 � 6I1 � 6I2 � 10 � 0�� 7I1 � 6I2 � 5
10 � 6I2 � 6I1 � 2I2 � 0 � 6I1 � 8I2 � �10

Step 4: � 5 6 �
��10 �8� �40 � 60 20

I1 � –––––––––– � ––––––––– � ––– � 1 A
� �7 6� 56 � 36 20
� 6 �8�

��7 5�
� 6 �10� 70 � 30 40

I2 � –––––––––– � ––––––– � –– � 2 A
20 20 20

Since I1 and I2 are positive and flow in opposite directions through
the 6-� resistor and 10-V source, the total current in this branch is
equal to the difference of the two currents in the direction of the
larger:

I2 > I1 (2 A > 1 A)

Therefore,

IR2
� I2 � I1 � 2 A � 1 A � 1 A in the direction of I2

It is sometimes impractical to draw all the branches of a circuit at
right angles to one another. The next example demonstrates how a por-
tion of a network may appear due to various constraints. The method of
analysis does not change with this change in configuration.

NA

R1 R2 6 �
+

–
1 �

5 VE1 –

+
10 VE2 –

+

21

+

–

a

2 �

I2

+

–

–

+

b
I1

R3

FIG. 8.27

Example 8.12.
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�6 �10�
�4 �1� �6 � 40 34

I2 � ––––––– � –––––––– � –––– � �0.773 A
�44 �44 �44

The current in the 4-� resistor and 4-V source for loop 1 is

I1 � I2 � �2.182 A � (�0.773 A)
� �2.182 A � 0.773 A
� �1.409 A

revealing that it is 1.409 A in a direction opposite (due to the minus
sign) to I1 in loop 1.

Supermesh Currents

On occasion there will be current sources in the network to which mesh
analysis is to be applied. In such cases one can convert the current
source to a voltage source (if a parallel resistor is present) and proceed
as before or utilize a supermesh current and proceed as follows.

Start as before and assign a mesh current to each independent loop,
including the current sources, as if they were resistors or voltage
sources. Then mentally (redraw the network if necessary) remove the
current sources (replace with open-circuit equivalents), and apply

NA

a

R1 = 2 �

2 �
+

–

E2 4 V

R3 = 6 �
–

+

E1 = 6 V
+

– +
–

b
I1 I2

E3 = 3 V
1 2

R2 4 �

+

–

–

+

FIG. 8.28

Example 8.13.

det[[�10,�4][�1,�10]]/det[[6,�4][4,�10]] ENTER �2.182

CALC. 8.2

EXAMPLE 8.13 Find the branch currents of the network of Fig. 8.28.

Solution:

Steps 1 and 2 are as indicated in the circuit.

Step 3: Kirchhoff’s voltage law is applied around each closed loop:

loop 1: �E1 �I1R1 � E2 � V2 � 0 (clockwise from point a)

�6 V � (2 �)I1 � 4 V � (4 �)(I1 � I2) � 0

loop 2: �V2 � E2 � V3 � E3 � 0 (clockwise from point b)

�(4 �)(I2 � I1) � 4 V � (6 �)(I2) � 3 V � 0

which are rewritten as

�10 � 4I1 � 2I1 � 4I2 � 0� �6I1 � 4I2 � �10
� 1 � 4I1 � 4I2 � 6I2 � 0 �4I1 � 10I2 � �1

or, by multiplying the top equation by �1, we obtain

6I1 � 4I2 � �10
4I1 � 10I2 � �1

Step 4: ��10 �4�
�  �1 �10� 100 � 4 96I1 � ––––––––––– � ––––––––– � –––– � �2.182 A
� 6 �4� �60 � 16 �44
� 4 �10�

Using the TI-86 calculator:
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Kirchhoff’s voltage law to all the remaining independent paths of the
network using the mesh currents just defined. Any resulting path,
including two or more mesh currents, is said to be the path of a super-
mesh current. Then relate the chosen mesh currents of the network to
the independent current sources of the network, and solve for the mesh
currents. The next example will clarify the definition of a supermesh
current and the procedure.

EXAMPLE 8.14 Using mesh analysis, determine the currents of the
network of Fig. 8.29.

NA

Solution: First, the mesh currents for the network are defined, as
shown in Fig. 8.30. Then the current source is mentally removed, as
shown in Fig. 8.31, and Kirchhoff’s voltage law is applied to the result-
ing network. The single path now including the effects of two mesh cur-
rents is referred to as the path of a supermesh current.

R1 6 �

E1 20 V

E2 12 V4 AI

R2

4 �

R3

2 �

FIG. 8.29

Example 8.14.

R1 6 �

E1 20 V

E2 12 V4 AI

R2

4 �

R3

2 �

I1 I2

a

FIG. 8.30

Defining the mesh currents for the network of Fig. 8.29.

E1 20 V

E2 12 VI1 I2

+ – + –

+

–

R2

4 �

R3

2 �
R1 6 �

Supermesh
current

FIG. 8.31

Defining the supermesh current.

Applying Kirchhoff’s law:

20 V � I1(6 �) � I1(4 �) � I2(2 �) � 12 V � 0

or 10I1 � 2I2 � 32
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Node a is then used to relate the mesh currents and the current
source using Kirchhoff’s current law:

I1 � I � I2

The result is two equations and two unknowns:

10I1 � 2I2 � 32
I1 � I2 � 4

Applying determinants:

�32 2 �
� 4 �1� (32)(�1) � (2)(4) 40

I1 � –––––––– � ––––––––––––––– � ––– � 3.33 A
�10 2 � (10)(�1) � (2)(1) 12
� 1 �1�

and I2 � I1 � I � 3.33 A � 4 A � �0.67 A

In the above analysis, it might appear that when the current source
was removed, I1 � I2. However, the supermesh approach requires that
we stick with the original definition of each mesh current and not alter
those definitions when current sources are removed.

EXAMPLE 8.15 Using mesh analysis, determine the currents for the
network of Fig. 8.32.

NA

I1 I3I22 � 8 �

6 �

6 A 8 A

FIG. 8.33

Defining the mesh currents for the network of Fig. 8.32.

Supermesh
current

I1 I3I22 � 8 �

6 �
+ –

+

–

–

+

FIG. 8.34

Defining the supermesh current for the
network of Fig. 8.32.

2 � 8 �

6 �

6 A 8 A

FIG. 8.32

Example 8.15.

Solution: The mesh currents are defined in Fig. 8.33. The current
sources are removed, and the single supermesh path is defined in Fig.
8.34.

Applying Kirchhoff’s voltage law around the supermesh path:

�V2� � V6� � V8� � 0
�(I2 � I1)2 � � I2(6 �) � (I2 � I3)8 � � 0
�2I2 � 2I1 � 6I2 � 8I2 � 8I3 � 0

2I1 � 16I2 � 8I3 � 0
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NA

Introducing the relationship between the mesh currents and the cur-
rent sources:

I1 � 6 A

I3 � 8 A

results in the following solutions:

2I1 � 16I2 � 8I3 � 0

2(6 A) � 16I2 � 8(8 A) � 0

and I2 � � 4.75 A

Then I2� � I1 � I2 � 6 A � 4.75 A � 1.25 A

and I8� � I3 � I2 � 8 A � 4.75 A � 3.25 A

Again, note that you must stick with your original definitions of the
various mesh currents when applying Kirchhoff’s voltage law around
the resulting supermesh paths.

8.8 MESH ANALYSIS (FORMAT APPROACH)

Now that the basis for the mesh-analysis approach has been established,
we will now examine a technique for writing the mesh equations more
rapidly and usually with fewer errors. As an aid in introducing the pro-
cedure, the network of Example 8.12 (Fig. 8.27) has been redrawn in
Fig. 8.35 with the assigned loop currents. (Note that each loop current
has a clockwise direction.)

The equations obtained are

�7I1 � 6I2 � 5
6I1 � 8I2 � �10

which can also be written as

7I1 � 6I2 � �5
8I2 � 6I1 � 10

and expanded as

Col. 1 Col. 2 Col. 3

(1 � 6)I1 � 6I2 � (5 � 10)
(2 � 6)I2 � 6I1 � 10

Note in the above equations that column 1 is composed of a loop
current times the sum of the resistors through which that loop current
passes. Column 2 is the product of the resistors common to another
loop current times that other loop current. Note that in each equation,
this column is subtracted from column 1. Column 3 is the algebraic
sum of the voltage sources through which the loop current of interest
passes. A source is assigned a positive sign if the loop current passes
from the negative to the positive terminal, and a negative value is
assigned if the polarities are reversed. The comments above are correct
only for a standard direction of loop current in each window, the one
chosen being the clockwise direction.

The above statements can be extended to develop the following for-
mat approach to mesh analysis:

76 A
�

16

I1 I2

21 2 �R3

+

–

–
R1

+
1 � R2 6 �

+

–

–

+

5 VE1 –

+
10 VE2 –

+

FIG. 8.35

Network of Fig. 8.27 redrawn with assigned
loop currents.
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1. Assign a loop current to each independent, closed loop (as in the
previous section) in a clockwise direction.

2. The number of required equations is equal to the number of
chosen independent, closed loops. Column 1 of each equation is
formed by summing the resistance values of those resistors
through which the loop current of interest passes and multiplying
the result by that loop current.

3. We must now consider the mutual terms, which, as noted in the
examples above, are always subtracted from the first column. A
mutual term is simply any resistive element having an additional
loop current passing through it. It is possible to have more than one
mutual term if the loop current of interest has an element in common
with more than one other loop current. This will be demonstrated in
an example to follow. Each term is the product of the mutual resistor
and the other loop current passing through the same element.

4. The column to the right of the equality sign is the algebraic sum of
the voltage sources through which the loop current of interest
passes. Positive signs are assigned to those sources of voltage
having a polarity such that the loop current passes from the
negative to the positive terminal. A negative sign is assigned to
those potentials for which the reverse is true.

5. Solve the resulting simultaneous equations for the desired loop
currents.

Before considering a few examples, be aware that since the column
to the right of the equals sign is the algebraic sum of the voltage sources
in that loop, the format approach can be applied only to networks in
which all current sources have been converted to their equivalent volt-
age source.

EXAMPLE 8.16 Write the mesh equations for the network of Fig.
8.36, and find the current through the 7-� resistor.

Solution:

Step 1: As indicated in Fig. 8.36, each assigned loop current has a
clockwise direction.

Steps 2 to 4:

I1: (8 � � 6 � � 2 �)I1 � (2 �)I2 � 4 V
I2: (7 � � 2 �)I2 � (2 �)I1 � �9 V

and 16I1 � 2I2 � 4
9I2 � 2I1 � �9

which, for determinants, are

16I1 � 2I2 � 4
�2I1 � 9I2 � �9

� 16 4�
��2 �9� �144 � 8 �136

and I2 � I7� � ––––––––– � ––––––––– � –––––
� 16 �2� 144 � 4 140
��2 9�

� �0.971 A

NA

I1 I2

21

4 V
–+

6 �

–+

–

+
8 � 7 �

+

–
2 �

+

–

–

+

9 V
+–

FIG. 8.36

Example 8.16.
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Solution:

Step 1: Each window is assigned a loop current in the clockwise direc-
tion:

Summing terms yields

2I1 � I2 � 0 � �2
6I2 � I1 � 3I3 � 4
7I3 � 3I2 � 0 � 2

which are rewritten for determinants as

Note that the coefficients of the a and b diagonals are equal. This
symmetry about the c-axis will always be true for equations written
using the format approach. It is a check on whether the equations were
obtained correctly.

We will now consider a network with only one source of voltage to
point out that mesh analysis can be used to advantage in other than multi-
source networks.

   2I1 �     I2 �   0 � �2

       0 �     3I2 �     7I3 � 2

     �I1 � 6I2 �     3I3 � 4

c b a

b

a

1 � � 1 � I1 �  1 � I2 � 0 � 2 V � 4 V 

3 � � 4 � I3 �  3 � I2 � 0 � 2 V
1 � � 2 � � 3 �  I2 �  1 � I1 � 3 �  I3 � 4 V 

I1 :
I2 :
I3 :

I
1
 does not pass through an element

mutual with I
3
.

I
3
 does not pass through an element

mutual with I
1
.

NA

I1 I2

21

1 �

+

–

–

+

4 V
–

+

–

+

+

–

–
2 V

+

+

–
1 �

+
2 V

–

–

+
4 �

3 � 3

2 �+ –

I3

FIG. 8.37

Example 8.17.

EXAMPLE 8.17 Write the mesh equations for the network of Fig.
8.37.
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Solution 1:

I1: (8 � � 3 �)I1 � (8 �)I3 � (3 �)I2 � 15 V
I2: (3 � � 5 � � 2 �)I2 � (3 �)I1 � (5 �)I3 � 0
I3: (8 � � 10 � � 5 �)I3 � (8 �)I1 � (5 �)I2 � 0

11I1 � 8I3 � 3I2 � 15
10I2 � 3I1 � 5I3 � 0
23I3 � 8I1 � 5I2 � 0

or 11I1 � 3I2 � 8I3 � 15
�3I1 � 10I2 � 5I3 � 0
�8I1 � 5I2 � 23I3 � 0

� 11 �3 15�
��3 10 0�
��8 �5 0�

and I3 � I10� � ––––––––––––– � 1.220 A
� 11 �3 �8�
��3 10 �5�
��8 �5 23�

Mathcad Solution: For this example, rather than take the time to
develop the determinant form for each variable, we will apply Mathcad
directly to the resulting equations. As shown in Fig. 8.39, a Guess value
for each variable must first be defined. Such guessing helps the com-
puter begin its iteration process as it searches for the solution. By pro-
viding a rough estimate of 1, the computer recognizes that the result
will probably be a number with a magnitude less than 100 rather than
have to worry about solutions that extend into the thousands or tens of
thousands—the search has been narrowed considerably.

Next, as shown, the word Given must be entered to tell the computer
that the defining equations will follow. Finally, each equation must be
carefully entered and set equal to the constant on the right using the
Ctrl� operation.

The results are then obtained with the Find(I1,I2,I3) expression and
an equal sign. As shown, the results are available with an acceptable
degree of accuracy even though entering the equations and performing
the analysis took only a minute or two (with practice).

NA

I1 I2

21 2 �

+

–
3 �

+

–

–

+

–+
+–

+

–
15 V

–+
+–

10 �

–+

3
I3

I10� = I3

8 � 5 �

FIG. 8.38

Example 8.18.

EXAMPLE 8.18 Find the current through the 10-� resistor of the net-
work of Fig. 8.38.
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det[[11,�3,15][�3,10,0][�8,�5,0]]/det[[11,�3,�8][�3,10,�5][�8,�5,23]] ENTER 1.220

CALC. 8.3

Solution 2: Using the TI-86 calculator:

FIG. 8.39

Using Mathcad to verify the numerical calculations of Example 8.18.

This display certainly requires some care in entering the correct
sequence of brackets in the required format, but it is still a rather neat,
compact format.

8.9 NODAL ANALYSIS (GENERAL APPROACH)

Recall from the development of loop analysis that the general network
equations were obtained by applying Kirchhoff’s voltage law around
each closed loop. We will now employ Kirchhoff’s current law to
develop a method referred to as nodal analysis.

A node is defined as a junction of two or more branches. If we now
define one node of any network as a reference (that is, a point of zero
potential or ground), the remaining nodes of the network will all have a
fixed potential relative to this reference. For a network of N nodes,
therefore, there will exist (N �1) nodes with a fixed potential relative to
the assigned reference node. Equations relating these nodal voltages can
be written by applying Kirchhoff’s current law at each of the (N �1)
nodes. To obtain the complete solution of a network, these nodal volt-
ages are then evaluated in the same manner in which loop currents were
found in loop analysis.
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The nodal analysis method is applied as follows:

1. Determine the number of nodes within the network.
2. Pick a reference node, and label each remaining node with a

subscripted value of voltage: V1, V2, and so on.
3. Apply Kirchhoff’s current law at each node except the reference.

Assume that all unknown currents leave the node for each
application of Kirchhoff’s current law. In other words, for each
node, don’t be influenced by the direction that an unknown
current for another node may have had. Each node is to be treated
as a separate entity, independent of the application of Kirchhoff’s
current law to the other nodes.

4. Solve the resulting equations for the nodal voltages.

A few examples will clarify the procedure defined by step 3. It will
initially take some practice writing the equations for Kirchhoff’s cur-
rent law correctly, but in time the advantage of assuming that all the
currents leave a node rather than identifying a specific direction for
each branch will become obvious. (The same type of advantage is asso-
ciated with assuming that all the mesh currents are clockwise when
applying mesh analysis.)

EXAMPLE 8.19 Apply nodal analysis to the network of Fig. 8.40.

Solution:

Steps 1 and 2: The network has two nodes, as shown in Fig. 8.41. The
lower node is defined as the reference node at ground potential (zero
volts), and the other node as V1, the voltage from node 1 to ground.

Step 3: I1 and I2 are defined as leaving the node in Fig. 8.42, and Kirch-
hoff’s current law is applied as follows:

I � I1 � I2

The current I2 is related to the nodal voltage V1 by Ohm’s law:

I2 � �

The current I1 is also determined by Ohm’s law as follows:

I1 �

with VR1
� V1 � E

Substituting into the Kirchhoff’s current law equation:

I � �

and rearranging, we have

I � � � � V1� � � �

or V1� � � � � I
E
�
R1

1
�
R2

1
�
R1

E
�
R1

1
�
R2

1
�
R1

V1
�
R2

E
�
R1

V1
�
R1

V1
�
R2

V1 � E
�

R1

VR1�
R1

V1
�
R2

VR2�
R2

I 1 A12 �R2

R1 6 �

E 24 V
–

+

FIG. 8.40

Example 8.19.

I 1 A12�R2

R1 6 �

E 24 V

V1

(0 V)

FIG. 8.41

Network of Fig. 8.40 with assigned nodes.

+

–
I 1 A12 �R2

R1 6 �

E 24 V

V1

(0 V)

I1

–

+

I2

FIG. 8.42

Applying Kirchhoff’s current law to the 
node V1.
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Substituting numerical values, we obtain

V1� � � � � 1 A � 4 A � 1 A
24 V
�
6 �

1
�
12 �

1
�
6 �

NA

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

FIG. 8.43

Example 8.20.

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

+

–

V2V1

FIG. 8.44

Defining the nodes for the network of Fig. 8.43.

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

+ –

+

–

V2V1

I1

I2

FIG. 8.45

Applying Kirchhoff’s current law to node V1.

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

+–

+

–

V2V1

I3

I2

FIG. 8.46

Applying Kirchhoff’s current law to node V2.

V1� � � 5 A

V1 � 20 V

The currents I1 and I2 can then be determined using the preceding equa-
tions:

I1 � � �

� �0.667 A

The minus sign indicates simply that the current I1 has a direction oppo-
site to that appearing in Fig. 8.42.

I2 � � � 1.667 A

EXAMPLE 8.20 Apply nodal analysis to the network of Fig. 8.43.

Solution 1:

Steps 1 and 2: The network has three nodes, as defined in Fig. 8.44,
with the bottom node again defined as the reference node (at ground
potential, or zero volts), and the other nodes as V1 and V2.

Step 3: For node V1 the currents are defined as shown in Fig. 8.45, and
Kirchhoff’s current law is applied:

0 � I1 � I2 � I

with I1 �

and I2 � �

so that � � I � 0

or � � � � I � 0

and V1� � � � V2� � � �I �

Substituting values:

V1� � � � V2� � � �2 A � � 6 A

For node V2 the currents are defined as shown in Fig. 8.46, and
Kirchhoff’s current law is applied:

I � I2 � I3

with I � �
V2
�
R3

V2 � V1
�

R2

64 V
�
8 �

1
�
4 �

1
�
4 �

1
�
8 �

E
�
R1

1
�
R2

1
�
R2

1
�
R1

V2
�
R2

V1
�
R2

E
�
R1

V1
�
R1

V1 � V2
�

R2

V1 � E
�

R1

V1 � V2
�

R2

VR2�
R2

V1 � E
�

R1

20 V
�
12 �

V1
�
R2

�4 V
�

6 �

20 V � 24 V
��

6 �

V1 � E
�

R1

1
�
4 �
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or I � � �

and V2� � � � V1� � � I

Substituting values:

V2� � � � V1� � � 2 A

Step 4: The result is two equations and two unknowns:

V1� � � � V2� � � 6 A

�V1� � � V2� � � � 2 A

which become

0.375V1 � 0.25V2 � 6
�0.25V1 � 0.35V2 � 2

Using determinants,

V1 � 37.818 V

V2 � 32.727 V

Since E is greater than V1, the current I1 flows from ground to V1 and is
equal to

IR1
� � � 3.273 A

The positive value for V2 results in a current IR3
from node V2 to ground

equal to

IR3
� � � � 3.273 A

Since V1 is greater than V2, the current IR2
flows from V1 to V2 and is

equal to

IR2
� � � 1.273 A

Mathcad Solution: For this example, we will use Mathcad to work
directly with the Kirchhoff’s current law equations rather than taking
the mathematical process down the line to more familiar forms. Simply
define everything correctly, provide the Guess values, and insert Given
where required. The process should be quite straightforward.

Note in Fig. 8.47 that the first equation comes from the fact that 
I1 � I2 � I � 0 while the second equation comes from I2 � I3 � I. Pay
particular attention to the fact that the first equation is defined by 
Fig. 8.45 and the second by Fig. 8.46 because the direction of I2 is dif-
ferent for each.

The results of V1 � 37.82 V and V2 � 32.73 V confirm the theoret-
ical solution.

37.818 V � 32.727 V
���

4 �

V1 � V2
�

R2

32.727 V
�

10 �

V2
�
R3

VR3�
R3

64 V � 37.818 V
��

8 �

E � V1
�

R1

1
�
10 �

1
�
4 �

1
�
4 �

1
�
4 �

1
�
4 �

1
�
8 �

1
�
4 �

1
�
10 �

1
�
4 �

1
�
R2

1
�
R3

1
�
R2

V2
�
R3

V1
�
R2

V2
�
R2

NA
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EXAMPLE 8.21 Determine the nodal voltages for the network of Fig.
8.48.

NA

4 A 2 �R1 R2 6 �

R3

2 A

12 �

FIG. 8.48

Example 8.21.

4 A
R1 2 A

2 �

I3

Reference

V1 V2

R2 6 �

R3  =  12 �

I1

FIG. 8.49

Defining the nodes and applying Kirchhoff’s current law to the node V1.

Solution:

Steps 1 and 2: As indicated in Fig. 8.49.

FIG. 8.47

Using Mathcad to verify the mathematical calculations of Example 8.20.
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4 A R1 2 A2 �

I3

Reference

V1 V2

R2
6 �

R3  =  12 �

I2

FIG. 8.50

Applying Kirchhoff’s current law to the node V2.

Step 3: Included in Fig. 8.49 for the node V1. Applying Kirchhoff’s
current law:

4 A � I1 � I3

and 4 A � � � �

Expanding and rearranging:

V1� � � � V2� � � 4 A

For node V2 the currents are defined as in Fig. 8.50.

1
�
12 �

1
�
12 �

1
�
2 �

V1 � V2
�

12 �

V1
�
2 �

V1 � V2
�

R3

V1
�
R1

Applying Kirchhoff’s current law:

0 � I3 � I2 � 2 A

and � � 2 A � 0 � � 2 A � 0

Expanding and rearranging:

V2� � � � V1� � � �2 A

resulting in two equations and two unknowns (numbered for later refer-
ence):

V1� � � � V2� � � �4 A

V2� � � � V1� � � �2 A

(8.3)

producing

V1 � V2 � �4 7V1 � V2 � 48

� V1 � V2 � �2 �1V1 � 3V2 � �24

��48 �1�
��24 �3�

and V1 � –––––––––– � � �6 V
��7 �1�
��1 03�

��7 48�
��1 �24�

V2 � –––––––––– � � �6 V
20

�120
�

20

120
�
20

3
�
12

1
�
12

1
�
12

7
�
12

1
�
12 �

1
�
6 �

1
�
12 �

1
�
12 �

1
�
12 �

1
�
2 �

1
�
12 �

1
�
6 �

1
�
12 �

V2
�
6 �

V2 � V1
�

12 �

V2
�
R2

V2 � V1
�

R3

⎫
⎪
⎬
⎪
⎭

⎫
⎪
⎬
⎪
⎭
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Since V1 is greater than V2, the current through R3 passes from V1 to V2.
Its value is

IR3
� � � � 1 A

The fact that V1 is positive results in a current IR1
from V1 to ground

equal to

IR1
� � � � 3 A

Finally, since V2 is negative, the current IR2
flows from ground to V2 and

is equal to

IR2
� � � � 1 A

Supernode

On occasion there will be independent voltage sources in the network to
which nodal analysis is to be applied. In such cases we can convert the
voltage source to a current source (if a series resistor is present) and pro-
ceed as before, or we can introduce the concept of a supernode and pro-
ceed as follows.

Start as before and assign a nodal voltage to each independent node of
the network, including each independent voltage source as if it were a
resistor or current source. Then mentally replace the independent voltage
sources with short-circuit equivalents, and apply Kirchhoff’s current law
to the defined nodes of the network. Any node including the effect of ele-
ments tied only to other nodes is referred to as a supernode (since it has
an additional number of terms). Finally, relate the defined nodes to the
independent voltage sources of the network, and solve for the nodal volt-
ages. The next example will clarify the definition of supernode.

EXAMPLE 8.22 Determine the nodal voltages V1 and V2 of Fig. 8.51
using the concept of a supernode.

6 V
�
6 �

V2
�
R2

VR2�
R2

6 V
�
2 �

V1
�
R1

VR1�
R1

12 V
�
12 �

6 V � (�6 V)
��

12 �

V1 � V2
�

R3

NA

R1 4 �

R3

10 �

E

12 V

R2 2 �6 A 4 A

V2V1

FIG. 8.51

Example 8.22.

Solution: Replacing the independent voltage source of 12 V with a
short-circuit equivalent will result in the network of Fig. 8.52. Even
though the mental application of a short-circuit equivalent is discussed
above, it would be wise in the early stage of development to redraw the
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R1 4 �

R3

10 �

R2 2 �6 A 4 A

V2V1

I1 I2

I3 I3
Supernode

FIG. 8.52

Defining the supernode for the network of Fig. 8.51.

network as shown in Fig. 8.52. The result is a single supernode for which
Kirchhoff’s current law must be applied. Be sure to leave the other defined
nodes in place and use them to define the currents from that region of the
network. In particular, note that the current I3 will leave the supernode at
V1 and then enter the same supernode at V2. It must therefore appear twice
when applying Kirchhoff’s current law, as shown below:

Σ Ii � Σ Io

6 A � I3 � I1 � I2 � 4 A � I3

or I1 � I2 � 6 A � 4 A � 2 A

Then � � 2 A

and � � 2 A

Relating the defined nodal voltages to the independent voltage source,
we have

V1 � V2 � E � 12 V

which results in two equations and two unknowns:

0.25V1 � 0.5V2 � 2
V1 � 1V2 � 12

Substituting:

V1 � V2 � 12

0.25(V2 � 12) � 0.5V2 � 2

and 0.75V2 � 2 � 3 � �1

so that V2 � � �1.333 V

and V1 � V2 � 12 V � �1.333 V � 12 V � �10.667 V

The current of the network can then be determined as follows:

I1 � � � 2.667 A

I2 � � � 0.667 A

I3 � � � � 1.2 A
12 V
�
10 �

10.667 V � (�1.333 V)
���

10 �

V1 � V2
�

10 �

1.333 V
�

2 �

V2
�
R2

10.667 V
�

4 �

V
�
R1

�1
�
0.75

V2
�
2 �

V1
�
4 �

V2
�
R2

V1
�
R1
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A careful examination of the network at the beginning of the analy-
sis would have revealed that the voltage across the resistor R3 must be
12 V and I3 must be equal to 1.2 A.

8.10 NODAL ANALYSIS (FORMAT APPROACH)

A close examination of Eq. (8.3) appearing in Example 8.21 reveals
that the subscripted voltage at the node in which Kirchhoff’s current
law is applied is multiplied by the sum of the conductances attached to
that node. Note also that the other nodal voltages within the same equa-
tion are multiplied by the negative of the conductance between the two
nodes. The current sources are represented to the right of the equals
sign with a positive sign if they supply current to the node and with a
negative sign if they draw current from the node.

These conclusions can be expanded to include networks with any
number of nodes. This will allow us to write nodal equations rapidly
and in a form that is convenient for the use of determinants. A major
requirement, however, is that all voltage sources must first be converted
to current sources before the procedure is applied. Note the parallelism
between the following four steps of application and those required for
mesh analysis in Section 8.8:

1. Choose a reference node and assign a subscripted voltage label to
the (N � 1) remaining nodes of the network.

2. The number of equations required for a complete solution is equal
to the number of subscripted voltages (N � 1). Column 1 of each
equation is formed by summing the conductances tied to the node of
interest and multiplying the result by that subscripted nodal voltage.

3. We must now consider the mutual terms that, as noted in the
preceding example, are always subtracted from the first column.
It is possible to have more than one mutual term if the nodal
voltage of current interest has an element in common with more
than one other nodal voltage. This will be demonstrated in an
example to follow. Each mutual term is the product of the mutual
conductance and the other nodal voltage tied to that conductance.

4. The column to the right of the equality sign is the algebraic sum of
the current sources tied to the node of interest. A current source is
assigned a positive sign if it supplies current to a node and a
negative sign if it draws current from the node.

5. Solve the resulting simultaneous equations for the desired
voltages.

Let us now consider a few examples.
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Steps 2 to 4:

and V1 � V2 � �2

� V1 � V2 � 3
7

�
12

1
�
3

1
�
3

1
�
2

V2: V2 V1
1

4 �
1

3 �
1

3 �
� � � �3 A

Supplying current
to node 2

Sum of
conductances

connected
to node 2

Mutual
conductance

V1: V1 V2
1

6 �
1

3 �
1

3 �
� � � �2 A

Drawing current
from node 1

Sum of
conductances

connected
to node 1

Mutual
conductance

NA

2 A 6 �R1 R2 4 �

R3

3 A

3 �

I2I1

FIG. 8.53

Example 8.23.

Reference

R1 6 �

R3

3 �

I2 3 A R2 4 �I1 2 A

V1 V2

FIG. 8.54

Defining the nodes for the network of Fig. 8.53.

EXAMPLE 8.23 Write the nodal equations for the network of Fig.
8.53.

Solution:

Step 1: The figure is redrawn with assigned subscripted voltages in Fig.
8.54.



288 ⏐⏐⏐ METHODS OF ANALYSIS AND SELECTED TOPICS (dc)

EXAMPLE 8.24 Find the voltage across the 3-� resistor of Fig. 8.55
by nodal analysis.

NA

2 �

V3�8 V
–

+

6 � 10 �

4 � 3 � 1 V–

+

–

+

FIG. 8.55

Example 8.24.

FIG. 8.56

Defining the nodes for the network of Fig. 8.55.

V3�2 �

V1

4 A

–

+
4 � 3 �

10 �

0.1 A

V2

Reference

6 �

� � � �V1 � � �V2 � �4 A
1

�
6 �

1
�
6 �

1
�
4 �

1
�
2 �

⎫
⎪
⎪
⎬
⎪
⎪
⎭

� � � �V2 � � �V1 � �0.1 A

V1 � V2 � 4

� V1 � V2 � �0.1

resulting in

11V1 � 2V2 � �48
�5V1 � 18V2 � �3

and

� 11 48�
��5 �3� �33 � 240 207

V2 � V3� � ––––––––– � –––––––––– � –––– � 1.101 V
� 11 �2� 198 � 10 188
��5 18�

As demonstrated for mesh analysis, nodal analysis can also be a very
useful technique for solving networks with only one source.

3
�
5

1
�
6

1
�
6

11
�
12

1
�
6 �

1
�
6 �

1
�
3 �

1
�
10 �

Solution: Converting sources and choosing nodes (Fig. 8.56), we
have
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EXAMPLE 8.25 Using nodal analysis, determine the potential across
the 4-� resistor in Fig. 8.57.

Solution 1: The reference and four subscripted voltage levels were
chosen as shown in Fig. 8.58. A moment of reflection should reveal that
for any difference in potential between V1 and V3, the current through
and the potential drop across each 5-� resistor will be the same. There-
fore, V4 is simply a midvoltage level between V1 and V3 and is known
if V1 and V3 are available. We will therefore not include it in a nodal
voltage and will redraw the network as shown in Fig. 8.59. Understand,
however, that V4 can be included if desired, although four nodal volt-
ages will result rather than the three to be obtained in the solution of
this problem.

V1: � � � �V1 � � �V2 � � �V3 � 0
1

�
10 �

1
�
2 �

1
�
10 �

1
�
2 �

1
�
2 �

NA

2 �

3 A

2 �

4 �2 �

5 � 5 �

FIG. 8.57

Example 8.25.

2 �

3 A

2 �

4 �2 �

5 � 5 �

V1

V4

V3V2

(0 V)

FIG. 8.58

Defining the nodes for the network of Fig.
8.57.

2 �

3 A

2 �

4 �2 �

V1

10 �

(0 V)

V2 V3

FIG. 8.59

Reducing the number of nodes for the network
of Fig. 8.57 by combining the two 5-�

resistors.

V2: � � �V2 � � �V1 � � �V3 � 3 A
1

�
2 �

1
�
2 �

1
�
2 �

1
�
2 �

V3: � � � �V3 � � �V2 � � �V1 � 0

which are rewritten as

1.1V1 � 0.5V2 � 0.1V3 � 0
V2 � 0.5V1 � 0.5V3 � 3

0.85V3 � 0.5V2 � 0.1V1 � 0

For determinants,

Before continuing, note the symmetry about the major diagonal in
the equation above. Recall a similar result for mesh analysis. Exam-
ples 8.23 and 8.24 also exhibit this property in the resulting equations.
Keep this thought in mind as a check on future applications of nodal
analysis.

��1.1 �0.5 0 �
��0.5 �1 3 �
��0.1 �0.5 0 �

V3 � V4� � ––––––––––––––––––– � 4.645 V
��1.1 �0.5 �0.1 �
��0.5 �1 �0.5 �
��0.1 �0.5 �0.85�

Mathcad Solution: By now the sequence of steps necessary to
solve a series of equations using Mathcad should be quite familiar and
less threatening than the first encounter. For this example, all the param-
eters were entered in the three simultaneous equations, avoiding the

1.1V1 � 0.5V2 � 0.1V3 � 0

�0.1V1 � 0.5V2 � 0.85V3 � 0

�0.5V1 � 1V2 � 0.5V3 � 3

c b a

b

a

1
�
10 �

1
�
2 �

1
�
4 �

1
�
2 �

1
�
10 �
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need to define each parameter of the network. Simply provide a Guess
at the three nodal voltages, apply the word Given, and enter the three
equations properly as shown in Fig. 8.60. It does take some practice to
ensure that the bracket is moved to the proper location before making
an entry, but this is simply part of the rules set up to maintain control of
the operations to be performed. Finally, request the desired nodal volt-
ages using the correct format. The numerical results will appear, again
confirming our theoretical solutions.

NA

3 � 4 � 1 �

9 �

240 V 6 � 6 � 2 �–

+

FIG. 8.61

Example 8.26.

FIG. 8.60

Using Mathcad to verify the mathematical calculations of Example 8.25.

The next example has only one source applied to a ladder network.

EXAMPLE 8.26 Write the nodal equations and find the voltage across
the 2-� resistor for the network of Fig. 8.61.
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V1: � � � �V1 � � �V2 � 0 � 20 V
1

�
4 �

1
�
4 �

1
�
6 �

1
�
12 �

NA

FIG. 8.62

Converting the voltage source to a current source and defining the nodes for the
network of Fig. 8.61.

12 �

V1

2 �20 A 6 � 6 �

(0 V)

1 �4 �

V2 V3

Solution: The nodal voltages are chosen as shown in Fig. 8.62.

V2: � � � �V2 � � �V1 � � �V3 � 0
1

�
1 �

1
�
4 �

1
�
1 �

1
�
6 �

1
�
4 �

V3: � � �V3 � � �V2 � 0 � 0

and

0.5V1 � 0.25V2 � 0 � 20

�0.25V1 � V2 � 1V3 � 0

0 � 1V2 � 1.5V3 � 0

Note the symmetry present about the major axis. Application of
determinants reveals that

V3 � V2� � 10.667 V

8.11 BRIDGE NETWORKS

This section introduces the bridge network, a configuration that has a
multitude of applications. In the chapters to follow, it will be employed
in both dc and ac meters. In the electronics courses it will be encoun-
tered early in the discussion of rectifying circuits employed in convert-
ing a varying signal to one of a steady nature (such as dc). A number of
other areas of application also require some knowledge of ac networks;
these areas will be discussed later.

The bridge network may appear in one of the three forms as indi-
cated in Fig. 8.63. The network of Fig. 8.63(c) is also called a symmet-
rical lattice network if R2 � R3 and R1 � R4. Figure 8.63(c) is an excel-
lent example of how a planar network can be made to appear nonplanar.
For the purposes of investigation, let us examine the network of Fig.
8.64 using mesh and nodal analysis.

17
�
12

1
�
1 �

1
�
2 �

1
�
1 �
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Mesh analysis (Fig. 8.65) yields

(3 � � 4 � � 2 �)I1 � (4 �)I2 � (2 �)I3 � 20 V
(4 � � 5 � � 2 �)I2 � (4 �)I1 � (5 �)I3 � 0
(2 � � 5 � � 1 �)I3 � (2 �)I1 � (5 �)I2 � 0

and 009I1 � 4I2 � 2I3 � 20
�4I1 � 11I2 � 5I3 � 0
�2I1 � 5I2 � 8I3 � 0

with the result that

I1 � 4 A

I2 � 2.667 A

I3 � 2.667 A

The net current through the 5-� resistor is

I5� � I2 � I3 � 2.667 A � 2.667 A � 0 A

Nodal analysis (Fig. 8.66) yields

� � � �V1 � � �V2 � � �V3 � A
20
�
3

1
�
2 �

1
�
4 �

1
�
2 �

1
�
4 �

1
�
3 �

NA

(b)

R2R1

R3 R4

R5

R1 R2

R5

R3 R4

(a) (c)

R2

R1

R3

R4

R5

FIG. 8.63

Various formats for a bridge network.

FIG. 8.64

Standard bridge configuration.

Rs 3 � R2

2 �

R3

2 �
5 �

R5

1 �

R4

4 �

R1

E 20 V

Rs 3 � R2
2 �

R3 1 �

R1

E 20 V

I1

4 �
R5 I2

I35 �
2 � R4

FIG. 8.65

Assigning the mesh currents to the network of 
Fig. 8.64.

R1

R2R5

R3

R4

2 �

3 �I Rs

V2

V1

V3

4 �

5 �
2 �

1 �

20
3 A

(0 V)

FIG. 8.66

Defining the nodal voltages for the network of 
Fig. 8.64.

det[[20/3,�1/4,�1/2][0,(1/4�1/2�1/5),�1/5][0,�1/5,(1/5�1/2�1/1)]] ENTER 10.5

CALC. 8.4

� � � �V2 � � �V1 � � �V3 � 0
1

�
5 �

1
�
4 �

1
�
5 �

1
�
2 �

1
�
4 �

� � � �V3 � � �V1 � � �V2 � 0

and

� � � �V1 � � �V2 � � �V3 � A
20
�
3

1
�
2 �

1
�
4 �

1
�
2 �

1
�
4 �

1
�
3 �

1
�
5 �

1
�
2 �

1
�
1 �

1
�
2 �

1
�
5 �

�� �V1 � � � � �V2 � � �V3 � 0
1

�
5 �

1
�
5 �

1
�
2 �

1
�
4 �

1
�
4 �

�� �V1 � � �V2 � � � � �V3 � 0

Note the symmetry of the solution.
With the TI-86 calculator, the top part of the determinant is determined

by the following (take note of the calculations within parentheses):

1
�
1 �

1
�
2 �

1
�
5 �

1
�
5 �

1
�
2 �
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with the bottom of the determinant determined by:

det[[(1/3�1/4�1/2),�1/4,�1/2][�1/4,(1/4�1/2�1/5),�1/5][�1/2,�1/5,(1/5�1/2�1/1)]] ENTER 1.312

CALC. 8.5

Finally, 10.5/1.312 ENTER 8

CALC. 8.6

and V1 � 8 V

Similarly, V2 � 2.667 V and V3 � 2.667 V

and the voltage across the 5-� resistor is

V5� � V2 � V3 � 2.667 V � 2.667 V � 0 V

Since V5� � 0 V, we can insert a short in place of the bridge arm with-
out affecting the network behavior. (Certainly V � IR � I·(0) �
0 V.) In Fig. 8.67, a short circuit has replaced the resistor R5, and the volt-
age across R4 is to be determined. The network is redrawn in Fig. 8.68, and

V1� � (voltage divider rule)

� � 

� � � 2.667 V

as obtained earlier.
We found through mesh analysis that I5� � 0 A, which has as its

equivalent an open circuit as shown in Fig. 8.69(a). (Certainly I �
V/R � 0/(∞ �) � 0 A.) The voltage across the resistor R4 will again
be determined and compared with the result above.

The network is redrawn after combining series elements, as shown in
Fig. 8.69(b), and

V3� � � � 8 V

and V1� � � � 2.667 V

as above.
The condition V5� � 0 V or I5� � 0 A exists only for a particular

relationship between the resistors of the network. Let us now derive this
relationship using the network of Fig. 8.70, in which it is indicated that
I � 0 A and V � 0 V. Note that resistor Rs of the network of Fig. 8.69
will not appear in the following analysis.

The bridge network is said to be balanced when the condition of
I � 0 A or V � 0 V exists.

If V � 0 V (short circuit between a and b), then

V1 � V2

8 V
�

3
1 �(8 V)
��
1 � � 2 �

2 �(20 V)
��
2 � � 3 �

(6 � � 3 �)(20 V)
��
6 � � 3 � � 3 �

40 V
�

15
2(20 V)

��
2 � 4 � 9

�
2
3

�(20 V)
��
�
2
3

� � �
4
3

� � �
9
3

�

�
2
3

�(20 V)
��
�
2
3

� � �
8
6

� � 3

(2 � � 1 �)20 V
����
(2 � � 1 �) � (4 � � 2 �) � 3 �

R1

R2

R3

R4

2 �

E

4 �

2 �

1 �

V  =  0

Rs 3 �

20 V

–

+
V1�

FIG. 8.67

Substituting the short-circuit equivalent for
the balance arm of a balanced bridge.

R1 2 �

–

+

4 � R2

R3 1 �2 � R4

Rs 3 �

E 20 V V1�–

+

FIG. 8.68

Redrawing the network of Fig. 8.67.
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and I1R1 � I2 R2

or I1 �

In addition, when V � 0 V,

V3 � V4

and I3 R3 � I4 R4

If we set I � 0 A, then I3 � I1 and I4 � I2, with the result that the
above equation becomes

I1R3 � I2 R4

Substituting for I1 from above yields

� �R3 � I2 R4

or, rearranging, we have

(8.4)

This conclusion states that if the ratio of R1 to R3 is equal to that of
R2 to R4, the bridge will be balanced, and I � 0 A or V � 0 V. A method
of memorizing this form is indicated in Fig. 8.71.

For the example above, R1 � 4 �, R2 � 2 �, R3 � 2 �, R4 � 1 �,
and

� � � 2

The emphasis in this section has been on the balanced situation.
Understand that if the ratio is not satisfied, there will be a potential drop
across the balance arm and a current through it. The methods just
described (mesh and nodal analysis) will yield any and all potentials or
currents desired, just as they did for the balanced situation.

8.12 Y-D (T-p) AND D-Y (p-T) CONVERSIONS

Circuit configurations are often encountered in which the resistors do
not appear to be in series or parallel. Under these conditions, it may be
necessary to convert the circuit from one form to another to solve for

2 �
�
1 �

4 �
�
2 �

R2
�
R4

R1
�
R3

�
R

R
1

3
� � �

R

R
2

4
�

I2 R2
�

R1

I2 R2
�

R1

NA

R1

R2

R3

R4

2 �

E

4 �

2 �

1 �

Rs 3 �

20 V
–

+

–

+

I =  0

(a)

V1�

6 �

3 �Rs

3 �

E 20 V
–

+

(b)

FIG. 8.69

Substituting the open-circuit equivalent for the balance arm of a balanced 
bridge.

R1

R3E

V  =  0
Rs

–

+
I  =  0

R4
V4

I4

I1V1–
+ I2

V2
–

+
R2

V3 –

+

I3

–+

FIG. 8.70

Establishing the balance criteria for a bridge 
network.

R1

R3

R2

R4

R1

R3

R2

R4
=

FIG. 8.71

A visual approach to remembering the
balance condition.
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any unknown quantities if mesh or nodal analysis is not applied. Two
circuit configurations that often account for these difficulties are the
wye (Y) and delta (�) configurations, depicted in Fig. 8.72(a). They
are also referred to as the tee (T) and pi (�), respectively, as indicated
in Fig. 8.72(b). Note that the pi is actually an inverted delta.

RB

RC

RA

“ ”

R1 R2

R3

“ ”

RB RA

RC

“ ”

(a) (b)

R1 R2

R3

“ ”

FIG. 8.72

The Y (T) and D (p) configurations.

The purpose of this section is to develop the equations for convert-
ing from D to Y, or vice versa. This type of conversion will normally
lead to a network that can be solved using techniques such as those
described in Chapter 7. In other words, in Fig. 8.73, with terminals a,
b, and c held fast, if the wye (Y) configuration were desired instead of
the inverted delta (D) configuration, all that would be necessary is a
direct application of the equations to be derived. The phrase instead of
is emphasized to ensure that it is understood that only one of these con-
figurations is to appear at one time between the indicated terminals.

It is our purpose (referring to Fig. 8.73) to find some expression for
R1, R2, and R3 in terms of RA, RB, and RC, and vice versa, that will
ensure that the resistance between any two terminals of the Y configu-
ration will be the same with the D configuration inserted in place of the
Y configuration (and vice versa). If the two circuits are to be equivalent,
the total resistance between any two terminals must be the same. Con-
sider terminals a-c in the D-Y configurations of Fig. 8.74.

a

RARB
R3

R2R1

RC
b

c

“ ”

FIG. 8.73

Introducing the concept of D-Y or Y-D
conversions.

R1 R2

R3

a b

c

Ra-c RB RA

RC

a b

c

Ra-c

RB RA

RC

a

b

c

Ra-c

External to path
of measurement

FIG. 8.74

Finding the resistance Ra-c for the Y and D configurations.
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Let us first assume that we want to convert the D (RA, RB, RC) to the Y
(R1, R2, R3). This requires that we have a relationship for R1, R2, and R3

in terms of RA, RB, and RC. If the resistance is to be the same between ter-
minals a-c for both the D and the Y, the following must be true:

Ra-c (Y) � Ra-c (D)

so that (8.5a)

Using the same approach for a-b and b-c, we obtain the following rela-
tionships:

(8.5b)

and (8.5c)

Subtracting Eq. (8.5a) from Eq. (8.5b), we have

(R1 � R2) � (R1 � R3) � � � � � �

so that (8.5d)

Subtracting Eq. (8.5d) from Eq. (8.5c) yields

(R2 � R3) � (R2 � R3) � � � � � �
so that 2R3 ��

RA �

2R
R
B

B

R
�
A

RC
�

resulting in the following expression for R3 in terms of RA, RB, and RC:

(8.6a)

Following the same procedure for R1 and R2, we have

(8.6b)

and (8.6c)

Note that each resistor of the Y is equal to the product of the resistors
in the two closest branches of the D divided by the sum of the resistors
in the D.

R2 � �
RA �

R

R
A R

B

C

� RC
�

R1 � �
RA �

R

R
B R

B

C

� RC
�

R3 � �
RA �

R

R
A

B

RB

� RC
�

RA RC � RB RA
��
RA � RB � RC

RA RB � RA RC
��
RA � RB � RC

R2 � R3 � �
R

R

A

A R

�
C

R

�

B

R

�
B R

R
A

C
�

RB RA � RB RC
��
RA � RB � RC

RC RB � RC RA
��
RA � RB � RC

Rb-c � R2 � R3 � �
RA

RA

�

(R

(
B

RB

�

�

RC

R

)

C)
�

Ra-b � R1 � R2 � �
RC

RC

�

(R

(
A

RA

�

�

RB

R

)

B)
�

Ra-c � R1 � R3 � �
RB

R

�
B(R

(
A

RA

�

�

RC

R

)

C)
�

NA
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To obtain the relationships necessary to convert from a Y to a D, first
divide Eq. (8.6a) by Eq. (8.6b):

� � �
R
R

C

A�

or RA �

Then divide Eq. (8.6a) by Eq. (8.6c):

� � �
R
R

C

B�

or RB �

Substituting for RA and RB in Eq. (8.6c) yields

R2 �

�

Placing these over a common denominator, we obtain

R2 �

�

and RC � (8.7a)

We follow the same procedure for RB and RA:

RA � (8.7b)

and RB � (8.7c)

Note that the value of each resistor of the D is equal to the sum of the
possible product combinations of the resistances of the Y divided by
the resistance of the Y farthest from the resistor to be determined.

Let us consider what would occur if all the values of a D or Y
were the same. If RA � RB � RC, Equation (8.6a) would become
(using RA only) the following:

R3 � �
RA �

R
R
AR

B

B

� RC
� � �

RA �

R
R
AR

A

A

� RA
� � �

3
R
R

2
A

A
� �

and, following the same procedure,

R1 � R2 �
RA
�
3

RA
�
3

RA
�
3

R1R2 � R1R3 � R2R3
���

R2

R1R2 � R1R3 � R2R3
���

R1

R1R2 � R1R3 � R2R3
���

R3

R2R3RC
���
R1R2 � R1R3 � R2R3

(R3RC /R1)
����
(R1R2 � R1R3 � R2R3)/(R1R2)

(R3 /R1)RC
���
(R3 /R2) � (R3 /R1) � 1

(RC R3 /R1)RC
����
(R3 RC /R2) � (RC R3 /R1) � RC

R3 RC
�

R2

(RARB)/(RA � RB � RC)
���
(RARC)/(RA � RB � RC)

R3
�
R2

RC R3
�

R1

(RA RB) /(RA � RB � RC)
���
(RB RC) /(RA � RB � RC)

R3
�
R1

NA
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In general, therefore,

(8.8a)

or (8.8b)

which indicates that for a Y of three equal resistors, the value of each
resistor of the D is equal to three times the value of any resistor of the
Y. If only two elements of a Y or a D are the same, the corresponding
D or Y of each will also have two equal elements. The converting of
equations will be left as an exercise for the reader.

The Y and the D will often appear as shown in Fig. 8.75. They are
then referred to as a tee (T) and a pi (�) network, respectively. The
equations used to convert from one form to the other are exactly the
same as those developed for the Y and D transformation.

RD � 3RY

RY � �
R

3
D
�

NA

(a)

R1

1

2

3

4

R2

R3

“ ” “ ” “ ”

RC

1

2

3

4

RB RA

“ ”

(b)

FIG. 8.75

The relationship between the Y and T configurations and the D and p

configurations.

EXAMPLE 8.27 Convert the D of Fig. 8.76 to a Y.

RB

RA

RCa
b

c

a

b

c

20 �
30 �

10 �

FIG. 8.76

Example 8.27.

R3 10 �

R1

31/3 � R2

5 �

a
ba

b

c
c

FIG. 8.77

The Y equivalent for the D of Fig. 8.76.



Solution:

R1 � � � � 3 �

R2 � � � � 5 �

R3 � � � � 10 �

The equivalent network is shown in Fig. 8.77 (page 298).

EXAMPLE 8.28 Convert the Y of Fig. 8.78 to a D.

Solution:

RA �

�

� �

RA � 180 �

However, the three resistors for the Y are equal, permitting the use of
Eq. (8.8) and yielding

RD � 3RY � 3(60 �) � 180 �

and RB � RC � 180 �

The equivalent network is shown in Fig. 8.79.

EXAMPLE 8.29 Find the total resistance of the network of Fig. 8.80,
where RA � 3 �, RB � 3 �, and RC � 6 �.

Solution:

Two resistors of the D were equal;
therefore, two resistors of the Y will
be equal.

R1 � � � � 1.5 �

R2 � � � � 1.5 �

R3 � � � � 0.75 �

Replacing the D by the Y, as shown in Fig. 8.81, yields

RT � 0.75 � �

� 0.75 � �

� 0.75 � � 2.139 �

RT � 2.889 �

(5.5 �)(3.5 �)
��
5.5 � � 3.5 �

(4 � � 1.5 �)(2 � � 1.5 �)
����
(4 � � 1.5 �) � (2 � � 1.5 �)

9 �
�
12

(3 �)(3 �)
��

12 �

RARB��
RA � RB � RC

18 �
�

12

(3 �)(6 �)
��

12 �

RARC��
RA � RB � RC

18 �
�

12

(3 �)(6 �)
��
3 � � 3 � � 6 �

RBRC��
RA � RB � RC

10,800 �
��

60
3600 � � 3600 � � 3600 �
���

60

(60 �)(60 �) � (60 �)(60 �) � (60 �)(60 �)
�����

60 �

R1R2 � R1R3 � R2R3
���

R1

600 �
�

60

(20 �)(30 �)
��

60 �

RARB��
RA � RB � RC

300 �
�

60

(30 �)(10 �)
��

60 �

RARC��
RA � RB � RC

1
�
3

200 �
�

60

(20 �)(10 �)
���
30 � � 20 � � 10 �

RB RC��
RA � RB � RC

←−
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R3 60 �

R1

60 � R2

60 �

a
ba

b

c
c

FIG. 8.78

Example 8.28.

RC

RB

180 � RA

a
ba

b

c
c

180 �

180 �

FIG. 8.79

The D equivalent for the Y of Fig. 8.78.

RB

3 �
RA

3 �

ba

c

4 � 2 �

6 � “    ”RT

RC

FIG. 8.80

Example 8.29.

RT

0.75 �

R1

ba

c

4 � 2 �

1.5 � 1.5 �

R3

R2

FIG. 8.81

Substituting the Y equivalent for the bottom D
of Fig. 8.80.

←⎯⎯⎯
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EXAMPLE 8.30 Find the total resistance of the network of Fig. 8.82.

Solutions: Since all the resistors of the D or Y are the same, Equa-
tions (8.8a) and (8.8b) can be used to convert either form to the other.
a. Converting the D to a Y. Note: When this is done, the resulting d ′ of

the new Y will be the same as the point d shown in the original fig-
ure, only because both systems are “balanced.” That is, the resis-
tance in each branch of each system has the same value:

RY � � � 2 � (Fig. 8.83)
6 �
�

3

RD
�
3

NA

FIG. 8.82

Example 8.30.

RT

6 �

a

bc

9 �
6
�

9 � 9 �

6 �

d

d*

2 �

2 � 2 �

a

bc

6 �

a

bc

6 �

6 �

FIG. 8.83

Converting the D configuration of Fig. 8.82 to a Y configuration.

RT

9 �

a

2 �

d, d	

c b

9 � 9 �

2 �2 �

FIG. 8.84

Substituting the Y configuration for the con-
verted D into the network of Fig. 8.82.

RT
6 �

a

bc

27 �
6 �

6 �

27 �
27 �

FIG. 8.85

Substituting the converted Y configuration into
the network of Fig. 8.82.

The network then appears as shown in Fig. 8.84.

RT � 2� 	 � 3.2727 �

b. Converting the Y to a D:

RD � 3RY � (3)(9 �) � 27 � (Fig. 8.85)

R′T � � � 4.9091 �

RT � � �

� � 3.2727 �

which checks with the previous solution.

2(4.9091 �)
��

3

2R′T�
3

R′T2R′T�
3R′T

R′T (R′T � R′T)
��
R′T � (R′T � R′T)

162 �
�

33
(6 �)(27 �)
��
6 � � 27 �

(2 �)(9 �)
��
2 � � 9 �
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8.13 APPLICATIONS

The Applications section of this chapter will discuss the constant cur-
rent characteristic in the design of security systems, the bridge circuit in
a common residential smoke detector, and the nodal voltages of a digi-
tal logic probe.

Constant Current Alarm Systems

The basic components of an alarm system employing a constant current
supply are provided in Fig. 8.86. This design is improved over that pro-
vided in Chapter 5 in the sense that it is less sensitive to changes in
resistance in the circuit due to heating, humidity, changes in the length
of the line to the sensors, and so on. The 1.5-k� rheostat (total resis-
tance between points a and b) is adjusted to ensure a current of 5 mA
through the single-series security circuit. The adjustable rheostat is nec-
essary to compensate for variations in the total resistance of the circuit
introduced by the resistance of the wire, sensors, sensing relay, and mil-
liammeter. The milliammeter is included to set the rheostat and ensure
a current of 5 mA.

Magnetic
switch

Window
foil

Door
switch

Sensing relay

1 kΩ

≅ 5 mA

E 10 V
+

–

Rheostat
0     1.5 kΩ

10-mA
movement

N/C

N/O 5 V @ 5 mA

To bell circuit

1 kΩ

a

b

FIG. 8.86

Constant current alarm system.

If any of the sensors should open, the current through the entire cir-
cuit will drop to zero, the coil of the relay will release the plunger, and
contact will be made with the N/C position of the relay. This action will
complete the circuit for the bell circuit, and the alarm will sound. For
the future, keep in mind that switch positions for a relay are always
shown with no power to the network, resulting in the N/C position of
Fig. 8.86. When power is applied, the switch will have the position indi-
cated by the dashed line. That is, various factors, such as a change in
resistance of any of the elements due to heating, humidity, and so on,
would cause the applied voltage to redistribute itself and create a sensi-
tive situation. With an adjusted 5 mA, the loading can change, but the
current will always be 5 mA and the chance of tripping reduced. Take
note of the fact that the relay is rated as 5 V at 5 mA, indicating that in
the on state the voltage across the relay is 5 V and the current through
the relay 5 mA. Its internal resistance is therefore 5 V/5 mA � 1 k� in
this state.

A more advanced alarm system using a constant current is provided
in Fig. 8.87. In this case an electronic system employing a single tran-
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sistor, biasing resistors, and a dc battery are establishing a current of
4 mA through the series sensor circuit connected to the positive side of
an operational amplifier (op-amp). Although the transistor and op-amp
devices may be new to you, they will be discussed in detail in your
electronics courses—you do not need to be aware of the details of their
operation for now. Suffice it to say for the moment that the transistor in
this application is being used not as an amplifier but as part of a design
to establish a constant current through the circuit. The op-amp is a very
useful component of numerous electronic systems, and it has important
terminal characteristics established by a variety of components internal
to its design. The LM2900 operational amplifier of Fig. 8.87 is one of
four found in the dual-in-line integrated circuit package appearing in
Fig. 8.88(a). Pins 2, 3, 4, 7, and 14 were used for the design of Fig.
8.87. Note in Fig. 8.88(b) the number of elements required to establish
the desired terminal characteristics—the details of which will be inves-
tigated in your electronics courses.

In Fig. 8.87, the designed 15-V dc supply, biasing resistors, and tran-
sistor in the upper right-hand corner of the schematic establish a con-
stant 4-mA current through the circuit. It is referred to as a constant
current source because the current will remain fairly constant at 4 mA
even though there may be moderate variations in the total resistance of
the series sensor circuit connected to the transistor. Following the 4 mA
through the circuit, we find that it enters terminal 2 (positive side of the
input) of the op-amp. A second current of 2 mA, called the reference
current, is established by the 15-V source and resistance R and enters
terminal 3 (negative side of the input) of the op-amp. The reference cur-
rent of 2 mA is necessary to establish a current for the 4-mA current of
the network to be compared against. So long as the 4-mA current exists,
the operational amplifier will provide a “high” output voltage that
exceeds 13.5 V, with a typical level of 14.2 V (according to the specifi-
cation sheet for the op-amp). However, if the sensor current drops from
4 mA to a level below the reference level of 2 mA, the op-amp will
respond with a “low” output voltage that is typically about 0.1 V. The
output of the operational amplifier will then signal the alarm circuit
about the disturbance. Note from the above that it is not necessary for
the sensor current to drop to 0 mA to signal the alarm circuit—just a
variation around the reference level that appears unusual.

One very important characteristic of this particular op-amp is that the
input impedance to the op-amp is relatively low. This feature is important
because you don’t want alarm circuits reacting to every voltage spike or
turbulence that comes down the line because of external switching action

NA
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FIG. 8.87

Constant current alarm system with electronic components.
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FIG. 8.88

LM2900 operational amplifier: (a) dual-in-
line package (DIP); (b) components; 
(c) impact of low-input impedance.
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or outside forces such as lightning. In Fig. 8.88(c), for instance, if a high
voltage should appear at the input to the series configuration, most of the
voltage will be absorbed by the series resistance of the sensor circuit
rather than traveling across the input terminals of the operational ampli-
fier—thus preventing a false output and an activation of the alarm.

Wheatstone Bridge Smoke Detector

TheWheatstonebridgeisapopularnetworkconfigurationwheneverdetec-
tion of small changes in a quantity is required. In Fig. 8.89(a), the dc bridge
configuration is employing a photoelectric device to detect the presence of
smoke and to sound the alarm. A photograph of an actual photoelectric
smoke detector appears in Fig. 8.89(b), and the internal construction of the
unit is shown in Fig. 8.89(c). First note that air vents are provided to permit
thesmoketoenter thechamberbelowtheclearplastic.Theclearplasticwill
prevent thesmokefromentering theupperchamberbutwillpermit the light

NA

(a)

Balance
adjust

Rbalance

Reference

Sensitive
relay

Vbalance+ –

Smoke
detector

R

Lamp

N/C

N/O

To alarm circuit

+

–

DC
power

a b

FIG. 8.89(a)(b)

Wheatstone bridge detector: (a) dc bridge configuration; 
(b) outside appearance.
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from the bulb in the upper chamber to bounce off the lower reflector to the
semiconductor light sensor (a cadmium photocell) at the left side of the
chamber. The clear plastic separation ensures that the light hitting the light
sensor in the upper chamber is not affected by the entering smoke. It estab-
lishes a reference level to compare against the chamber with the entering
smoke. If no smoke is present, the difference in response between the sen-
sor cells will be registered as the normal situation. Of course, if both cells
were exactly identical, and if the clear plastic did not cut down on the light,
both sensors would establish the same reference level, and their difference
would be zero. However, this is seldom the case, so a reference difference is
recognized as the sign that smoke is not present. However, once smoke is
present, there will be a sharp difference in the sensor reaction from the
norm, and the alarm should be sounded.

In Fig. 8.89(a), we find that the two sensors are located on opposite
arms of the bridge. With no smoke present the balance-adjust rheostat will
be used to ensure that the voltage V between points a and b is zero volts and
the resulting current through the primary of the sensitive relay will be zero
amperes. Taking a look at the relay, we find that the absence of a voltage
from a to b will leave the relay coil unenergized and the switch in the N/O
position (recall that the position of a relay switch is always drawn in the
unenergized state). An unbalanced situation will result in a voltage across
the coil and activation of the relay, and the switch will move to the N/C
position to complete the alarm circuit and activate the alarm. Relays with
two contacts and one movable arm are called single-pole–double-throw
(SPDT) relays. The dc power is required to set up the balance situation,
energize the parallel bulb so we know that the system is on, and provide the
voltage from a to b if an unbalanced situation should develop.

One may ask why only one sensor isn’t used since its resistance
would be sensitive to the presence of smoke. The answer lies in the fact
that the smoke detector might generate a false readout if the supply
voltage or output light intensity of the bulb should vary. Smoke detec-
tors of the type just described must be used in gas stations, kitchens,
dentist offices, etc., where the range of gas fumes present may set off an
ionizing type smoke detector.

Ceiling Reflector

Reference cell

Sealed chamber

Solid barrier

Light
source

Clear
plastic

Reflector

Vents for the
passage of air or smoke

Room

Smoke
detector

Photoconductive
cells

(Resistance a function
of applied light)

(c)

FIG. 8.89(c)

Wheatstone bridge smoke detector: (c) internal construction.
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Schematic with Nodal Voltages

When an investigator is presented with a system that is down or not
operating properly, one of the first options is to check the system’s
specified voltages on the schematic. These specified voltage levels are
actually the nodal voltages determined in this chapter. Nodal voltage is
simply a special term for a voltage measured from that point to ground.
The technician will attach the negative or lower-potential lead to the
ground of the network (often the chassis) and then place the positive or
higher-potential lead on the specified points of the network to check the
nodal voltages. If they match, it is a good sign that that section of the
system is operating properly. If one or more fail to match the given val-
ues, the problem area can usually be identified. Be aware that a reading
of �15.87 V is significantly different from an expected reading of
�16 V if the leads have been properly attached. Although the actual
numbers seem close, the difference is actually more than 30 V. One
must expect some deviation from the given value as shown, but always
be very sensitive to the resulting sign of the reading.

The schematic of Fig. 8.90(a) includes the nodal voltages for a logic
probe used to measure the input and output states of integrated circuit
logic chips. In other words, the probe determines whether the measured
voltage is one of two states: high or low (often referred to as “on” or
“off” or 1 or 0). If the LOGIC IN terminal of the probe is placed on a
chip at a location where the voltage is between 0 and 1.2 V, the voltage
is considered a low level, and the green LED will light. (LEDs are light-
emitting semiconductor diodes that will emit light when current is
passed through them.) If the measured voltage is between 1.8 V and
5 V, the reading is considered high, and the red LED will light. Any
voltage between 1.2 V and 1.8 V is considered a “floating level” and is
an indication that the system being measured is not operating correctly.
Note that the reference levels mentioned above are established by the
voltage divider network to the right of the schematic. The op-amps
employed are of such high input impedance that their loading on the
voltage divider network can be ignored and the voltage divider network
considered a network unto itself. Even though three 5.5-V dc supply
voltages are indicated on the diagram, be aware that all three points are
connected to the same supply. The other voltages provided (the nodal
voltages) are the voltage levels that should be present from that point to
ground if the system is working properly.

The op-amps are used to sense the difference between the reference
at points 3 and 6 and the voltage picked up in LOGIC IN. Any differ-
ence will result in an output that will light either the green or the red
LED. Be aware, because of the direct connection, that the voltage at
point 3 is the same as shown by the nodal voltage to the left, or 1.8 V.
Likewise, the voltage at point 6 is 1.2 V for comparison with the volt-
ages at points 5 and 2, which reflect the measured voltage. If the input
voltage happened to be 1.0 V, the difference between the voltages at
points 5 and 6 would be 0.2 V, which ideally would appear at point 7.
This low potential at point 7 would result in a current flowing from the
much higher 5.5-V dc supply through the green LED, causing it to light
and indicating a low condition. By the way, LEDs, like diodes, permit
current through them only in the direction of the arrow in the symbol.
Also note that the voltage at point 6 must be higher than that at point 5
for the output to turn on the LED. The same is true for point 2 over
point 3, which reveals why the red LED does not light when the 1.0-V
level is measured.

NA
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Oftentimes it is impractical to draw the full network as shown in Fig.
8.90(b) because there are space limitations or because the same voltage
divider network is used to supply other parts of the system. In such
cases one must recognize that points having the same shape are con-
nected, and the number in the figure reveals how many connections are
made to that point.

NA

FIG. 8.90

Logic probe: (a) schematic with nodal voltages; (b) network with global
connections; (c) photograph of commercially available unit.

–

+

–

+

+5.5 V

R1 6.8 kΩ

1.8 V

1.5 V

1.2 V

R2 560 Ω

R3 560 Ω

R4 2.2 kΩ

R5

1 MΩ

3 4

2 11

4

11
7

+5.5 V

+5.5 V

U2A
LM324

5

6

High

Low

R6

10 kΩ
TP

LOGIC IN

LED 1
Red

LED 2
Green

+5.5 V
R7

1.2 kΩ

(b)

1

1

1

1

1

1

–

+

–

+

+5.5 V

R1 6.8 kΩ

1.8 V

1.5 V

1.2 V

R2 560 Ω

R3 560 Ω

R4 2.2 kΩ

R5

1 MΩ

3 4

2 11

4

11
7

+5.5 V

+5.5 V

U2A
LM324

5

6

High

Low

R6

10 kΩ
TP

LOGIC IN

LED 1
Red

LED 2
Green

+5.5 V
R7

1.2 kΩ

(a)

U2B
LM324

1

1

U2B
LM324



A photograph of the outside and inside of a commercially avail-
able logic probe is provided in Fig. 8.90(c). Note the increased
complexity of system because of the variety of functions that the probe
can perform.

8.14 COMPUTER ANALYSIS

PSpice

The bridge network of Fig. 8.70 will now be analyzed using PSpice to
ensure that it is in the balanced state. The only component that has not
been introduced in earlier chapters is the dc current source. It can be
obtained by first selecting the Place a part key and then the SOURCE
library. Scrolling the Part List will result in the option IDC. A left
click of IDC followed by OK will result in a dc current source whose
direction is toward the bottom of the screen. One left click of the mouse
(to make it red—active) followed by a right click of the mouse will
result in a listing having a Mirror Vertically option. Selecting that
option will flip the source and give it the direction of Fig. 8.70.

The remaining parts of the PSpice analysis are pretty straightfor-
ward, with the results of Fig. 8.91 matching those obtained in the analy-
sis of Fig. 8.70. The voltage across the current source is 8 V positive to
ground, and the voltage at either end of the bridge arm is 2.667 V. The
voltage across R5 is obviously 0 V for the level of accuracy displayed,
and the current is of such a small magnitude compared to the other cur-
rent levels of the network that it can essentially be considered 0 A. Note
also for the balanced bridge that the current through R1 equals that of
R3, and the current through R2 equals that of R4.
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FIG. 8.91

Applying PSpice to the bridge network of Fig. 8.70.



For the analysis, both indicators and a meter will be used to display
the desired results. An A indicator in the H position was used for the
current through R5, and a V indicator in the V position was used for the
voltage across R2. A multimeter in the voltmeter mode was placed to
read the voltage across R4. The ammeter is reading the mesh or loop
current for that branch, and the two voltmeters are displaying the nodal
voltages of the network.

After simulation, the results displayed are an exact match with those
of Example 8.18.
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Electronics Workbench

Electronics Workbench will now be used to verify the results of Exam-
ple 8.18. All the elements of creating the schematic of Fig. 8.92 have
been presented in earlier chapters; they will not be repeated here in
order to demonstrate how little documentation is now necessary to carry
you through a fairly complex network.

NA

FIG. 8.92

Using Electronics Workbench to verify the results of Example 8.18.
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R1

E VabI 6 A

3 �

a

b

+

–
10 V

FIG. 8.93

Problem 1.

Rs 10 k�

2 �

4 AI 6 � V
+

–

(a)

2 �

4 AI 6 � V
+

–

(b)

FIG. 8.94

Problem 2.

2. a. Determine V for the current source of Fig. 8.94(a)
with an internal resistance of 10 k�.

b. The source of part (a) is approximated by an ideal cur-
rent source in Fig. 8.94(b) since the source resistance
is much larger than the applied load. Determine the
resulting voltage V for Fig. 8.94(b), and compare it to
that obtained in part (a). Is the use of the ideal current
source a good approximation?

PROBLEMS

SECTION 8.2 Current Sources

1. Find the voltage Vab (with polarity) across the ideal cur-
rent source of Fig. 8.93.

3. For the network of Fig. 8.95:
a. Find the currents I1 and Is.
b. Find the voltages Vs and V3.

4. Find the voltage V3 and the current I2 for the network of
Fig. 8.96.

FIG. 8.95

Problem 3.
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–
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FIG. 8.96

Problem 4.

R1 6 �

0.6 A

I

16 � V3

+

–
R3

I2

R2 24 �

8 �R4



SECTION 8.3 Source Conversions

5. Convert the voltage sources of Fig. 8.97 to current
sources.
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Problem 5.

6. Convert the current sources of Fig. 8.98 to voltage
sources.

Rs3 �

1.5 A

(a)
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(b)

II

FIG. 8.98

Problem 6.

FIG. 8.99

Problem 7.

Rs 4 �
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I RL 2 �

FIG. 8.100

Problem 8.

R1

10 �

R2

6.8 �

R3 39 �E 12 V

I1

Vab

a

b

I  =  2 A

7. For the network of Fig. 8.99:
a. Find the current through the 2-� resistor.
b. Convert the current source and 4-� resistor to a volt-

age source, and again solve for the current in the 2-�
resistor. Compare the results.

8. For the configuration of Fig. 8.100:
a. Convert the current source and 6.8-� resistor to a

voltage source.
b. Find the magnitude and direction of the current I1.
c. Find the voltage Vab and the polarity of points a and b.
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SECTION 8.4 Current Sources in Parallel

9. Find the voltage V2 and the current I1 for the network of
Fig. 8.101.

10. a. Convert the voltage sources of Fig. 8.102 to current
sources.

b. Find the voltage Vab and the polarity of points a and b.
c. Find the magnitude and direction of the current I.

FIG. 8.101

Problem 9.

7 A

I1

V2R1 4 � R2 6 � 3 A

+

–

FIG. 8.102

Problem 10.

R1 3 �
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R3 6 � R412 �

I

b

a
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FIG. 8.103

Problem 11.

V2
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+ –
R2
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I2
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V1
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–

FIG. 8.104

Problems 12, 17, 25, and 54.

R3 8 � 6 V

R2

2 �

E2

R1

4 �

4 V E1

R2 3 �

10 VE1

R1 4 �

12 VE2

R3 12 �

(a) (b)

11. For the network of Fig. 8.103:
a. Convert the voltage source to a current source.
b. Reduce the network to a single current source, and

determine the voltage V1.
c. Using the results of part (b), determine V2.
d. Calculate the current I2.

SECTION 8.6 Branch-Current Analysis

12. Using branch-current analysis, find the magnitude and
direction of the current through each resistor for the net-
works of Fig. 8.104.
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*13. Using branch-current analysis, find the current through
each resistor for the networks of Fig. 8.105. The resistors
are all standard values.

*14. For the networks of Fig. 8.106, determine the current I2

using branch-current analysis, and then find the voltage
Vab.

FIG. 8.105

Problems 13, 18, and 26.
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Problems 14, 19, and 27.
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*15. For the network of Fig. 8.107:
a. Write the equations necessary to solve for the branch

currents.
b. By substitution of Kirchhoff’s current law, reduce the

set to three equations.
c. Rewrite the equations in a format that can be solved

using third-order determinants.
d. Solve for the branch current through the resistor R3.

FIG. 8.107

Problems 15, 20, and 28.
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*16. For the transistor configuration of Fig. 8.108:
a. Solve for the currents IB, IC, and IE using the fact that

VBE � 0.7 V and VCE � 8 V.
b. Find the voltages VB, VC, and VE with respect to

ground.
c. What is the ratio of output current IC to input current

IB? [Note: In transistor analysis this ratio is referred to
as the dc beta of the transistor (bdc).]

SECTION 8.7 Mesh Analysis (General Approach)

17. Find the current through each resistor for the networks of
Fig. 8.104.

18. Find the current through each resistor for the networks of
Fig. 8.105.

19. Find the mesh currents and the voltage Vab for each net-
work of Fig. 8.106. Use clockwise mesh currents.

20. a. Find the current I3 for the network of Fig. 8.107 using
mesh analysis.

b. Based on the results of part (a), how would you com-
pare the application of mesh analysis to the branch-
current method?

*21. Using mesh analysis, determine the current through the
5-� resistor for each network of Fig. 8.109. Then deter-
mine the voltage Va.

FIG. 8.108

Problem 16.

FIG. 8.109

Problems 21 and 29.
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*23. Write the mesh equations for each of the networks of Fig.
8.111, and, using determinants, solve for the loop cur-
rents in each network.
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4 �

R1
7 �

R6

E2

12 V

3 �

R2R3

E3

15 V

10 �

FIG. 8.110

Problems 22, 30, and 34.

R1

2 �

1 �

R3

8 �

9 V

6 V

E2

R4

(b)

4 �

6 V

E1

R2

6.8 k� 2.7 k�

4.7 k�

6 V

1.1 k�
22 k�

8.2 k�2.2 k�

5 V1.2 k�

(a)

FIG. 8.111

Problems 23, 31, and 55.

*24. Using the supermesh approach, find the current through
each element of the networks of Fig. 8.112.

FIG. 8.112

Problem 24.

(b)

1 �

6 �

20 V

3 A
4 �

8 �

8 A

(a)

4 �

24 V

6 �

10 �

6 A
12 V

*22. Write the mesh equations for each of the networks of Fig.
8.110, and, using determinants, solve for the loop cur-
rents in each network. Use clockwise mesh currents.
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SECTION 8.8 Mesh Analysis (Format Approach)

25. Using the format approach, write the mesh equations for
the networks of Fig. 8.104. Is symmetry present? Using
determinants, solve for the mesh currents.

26. a. Using the format approach, write the mesh equations
for the networks of Fig. 8.105.

b. Using determinants, solve for the mesh currents.
c. Determine the magnitude and direction of the current

through each resistor.

27. a. Using the format approach, write the mesh equations
for the networks of Fig. 8.106.

b. Using determinants, solve for the mesh currents.
c. Determine the magnitude and direction of the current

through each resistor.

28. Using mesh analysis, determine the current I3 for the net-
work of Fig. 8.107, and compare your answer to the solu-
tion of Problem 15.

29. Using mesh analysis, determine I5� and Va for the net-
work of Fig. 8.109(b).

30. Using mesh analysis, determine the mesh currents for the
networks of Fig. 8.110.

31. Using mesh analysis, determine the mesh currents for the
networks of Fig. 8.111.

SECTION 8.9 Nodal Analysis (General Approach)

32. Write the nodal equations for the networks of Fig. 8.113,
and, using determinants, solve for the nodal voltages. Is
symmetry present?

FIG. 8.113

Problems 32 and 38.

R2 4 �

R4

2 �

3 A

I2R3
5 �

R1
2 �

5 A
I1

(a)

R4
5 �

I2

R3
20 �R1 2 �

4 A
I1

(b)

R2

4 �

2 A
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34. a. Write the nodal equations for the networks of Fig.
8.110.

b. Using determinants, solve for the nodal voltages.
c. Determine the magnitude and polarity of the voltage

across each resistor.

*35. For the networks of Fig. 8.115, write the nodal equations
and solve for the nodal voltages.

R28 �

R3

4 �

4 A I2
R4 6 �R13 �

5 A I1

(I)

E

12 V

R2
4 �

I26 AI1

(II)

R4

2 �

R1 5 � 7 A

R3

3 �

R5 8 �

FIG. 8.114

Problems 33 and 39.

I1
15 V 3 AE1

(I)

R1 3 �

R24 �

R5
6 �

R3 7 �

R4

5 �

6 �
R6

2 A

I1

(II)

R1 9 �

R6

20 �

R4

20 �

R5

20 �

R3 18 �
R24 �

E116 V

FIG. 8.115

Problems 35 and 40.

36. a. Determine the nodal voltages for the networks of Fig.
8.116.

b. Find the voltage across each current source.

(I) (II)

4 �6 �

2 A

5 A

2 �

5 �

2 �
5 A

9 �

20 V

2 �

2 �

4 �
2 �

7 �

FIG. 8.116

Problems 36 and 41.

33. a. Write the nodal equations for the networks of Fig.
8.114.

b. Using determinants, solve for the nodal voltages.
c. Determine the magnitude and polarity of the voltage

across each resistor.
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40 �3 A

16 V

4 A

10 �

6 �2 A 12 �

(I) (II)

4 �

24 V

20 �

FIG. 8.117

Problems 37 and 56.

Rs 6 �

R5

5 �

R1

5 �

10 �

R3

R4

R2

5 �

20 �
6 VE

FIG. 8.118

Problems 42 and 43.

Rs 2 k�

R5

36 k�

R1

33 k�

R4

R2

56 k�

5.6 k�
24 VE

R3

3.3 k�

FIG. 8.119

Problems 44 and 45.

*37. Using the supernode approach, determine the nodal volt-
ages for the networks of Fig. 8.117.

SECTION 8.10 Nodal Analysis (Format Approach)

38. Using the format approach, write the nodal equations for
the networks of Fig. 8.113. Is symmetry present? Using
determinants, solve for the nodal voltages.

39. a. Write the nodal equations for the networks of Fig.
8.114.

b. Solve for the nodal voltages.
c. Find the magnitude and polarity of the voltage across

each resistor.

40. a. Write the nodal equations for the networks of Fig.
8.115.

b. Solve for the nodal voltages.
c. Find the magnitude and polarity of the voltage across

each resistor.

41. Determine the nodal voltages for the networks of Fig.
8.116. Then determine the voltage across each current
source.

SECTION 8.11 Bridge Networks

42. For the bridge network of Fig. 8.118:
a. Write the mesh equations using the format approach.
b. Determine the current through R5.
c. Is the bridge balanced?
d. Is Equation (8.4) satisfied?

43. For the network of Fig. 8.118:
a. Write the nodal equations using the format approach.
b. Determine the voltage across R5.
c. Is the bridge balanced?
d. Is Equation (8.4) satisfied?

44. For the bridge of Fig. 8.119:
a. Write the mesh equations using the format approach.
b. Determine the current through R5.
c. Is the bridge balanced?
d. Is Equation (8.4) satisfied?



318 ⏐⏐⏐ METHODS OF ANALYSIS AND SELECTED TOPICS (dc)
NA

45. For the bridge network of Fig. 8.119:
a. Write the nodal equations using the format approach.
b. Determine the current across R5.
c. Is the bridge balanced?
d. Is Equation (8.4) satisfied?

46. Write the nodal equations for the bridge configuration of
Fig. 8.120. Use the format approach.

SECTION 8.12 Y-D (T-p) and D-Y (p-T) Conversions

48. Using a D-Y or Y-D conversion, find the current I in each
of the networks of Fig. 8.122.

*47. Determine the current through the source resistor Rs of
each network of Fig. 8.121 using either mesh or nodal
analysis. Discuss why you chose one method over the
other.

FIG. 8.120

Problem 46.

9 V
R1

100 k�

R4

100 k�

R2

200 k�

1 k�

R34 mA

Rs 1 k�I

200 k�

FIG. 8.121

Problem 47.

20 �
10 �

R2

R5
2 A

Rs
R4

(b)

20 �
R1

R3

20 �

10 �

10 �I

R1 2 k�

E

(a)

Rs 1 k� 2 k� R2

10 V R3 2 k� 2 k�R4

R5

2 k�

FIG. 8.122

Problem 48.

20 V

I
2 �

4 �

1 �

(a)

2 �

3 �

8 V

I

4.7 k�

6.8 k�

(b)

1.1 k�

6.8 k� 6.8 k�
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*50. Determine the current I for the network of Fig. 8.124.

*51. a. Replace the T configuration of Fig. 8.125 (composed
of 6-k� resistors) with a p configuration.

b. Solve for the source current Is1.

5 A

I

3 k�

3 k� 6 k�

3 k�2 k�

3 k�

3 k�

FIG. 8.124

Problem 50.

*52. a. Replace the p configuration of Fig. 8.126 (composed
of 3-k� resistors) with a T configuration.

b. Solve for the source current Is.

E1 10 V
+

–
E2 5 V

+

–R3 6 k�

R2

6 k�

R1

6 k�Is1

FIG. 8.125

Problem 51.

E 20 V
R5

Rs 1 k�

Is

R4 3 k�

R3

3 k�

R1 2 k� R2 2 k�

3 k�

FIG. 8.126

Problem 52.

*49. Repeat Problem 48 for the networks of Fig. 8.123.

(a) (b)

400 V

I

4 k�
42 V

I

4 k�

6 k�

4 k�

18 �

6 � 6 �

6 �
18 �18 �

FIG. 8.123

Problem 49.
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RT

9 � 9 �

9 �

9 �
9 �

9 �9 �

9 �

a b

c
d

h g

fe

FIG. 8.127

Problem 53.

*53. Using Y-D or D-Y conversions, determine the total resis-
tance of the network of Fig. 8.127.

SECTION 8.14 Computer Analysis

PSpice or Electronics Workbench

54. Using schematics, find the current through each element
of Fig. 8.104.

*55. Using schematics, find the mesh currents for the network
of Fig. 8.111(a).

*56. Using schematics, determine the nodal voltages for the
network of Fig. 8.117(II).

Programming Language (C��, QBASIC, Pascal, etc.)

57. Given two simultaneous equations, write a program to
solve for the unknown variables.

*58. Using mesh analysis and determinants, write a program
to solve for both mesh currents of the network of Fig.
8.26 (for any component values).

*59. Using nodal analysis and determinants, write a program
to solve for the nodal voltages of the network of Fig. 8.44
(for any component values).

GLOSSARY

Branch-current method A technique for determining the
branch currents of a multiloop network.

Bridge network A network configuration typically having a
diamond appearance in which no two elements are in series
or parallel.

Current sources Sources that supply a fixed current to a net-
work and have a terminal voltage dependent on the network
to which they are applied.

Delta (D), pi (p) configuration A network structure that
consists of three branches and has the appearance of the
Greek letter delta (D) or pi (p).

Determinants method A mathematical technique for finding
the unknown variables of two or more simultaneous linear
equations.

Mesh analysis A technique for determining the mesh (loop)
currents of a network that results in a reduced set of equa-
tions compared to the branch-current method.

Mesh (loop) current A labeled current assigned to each dis-
tinct closed loop of a network that can, individually or in
combination with other mesh currents, define all of the
branch currents of a network.

Nodal analysis A technique for determining the nodal volt-
ages of a network.

Node A junction of two or more branches in a network.
Wye (Y), tee (T) configuration A network structure that

consists of three branches and has the appearance of the
capital letter Y or T.


